time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4883B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Probability Density Function
     22 
     23 > [Truncated normal][truncated-normal-distribution] distribution probability density function (PDF).
     24 
     25 <section class="intro">
     26 
     27 A normally distributed random variable `X` conditional on `a < X < b` is called a [truncated normal][truncated-normal-distribution] distribution.
     28 The [probability density function][pdf] (PDF) for a [truncated normal][truncated-normal-distribution] random variable is
     29 
     30 <!-- <equation class="equation" label="eq:truncated_normal_pdf" align="center" raw="f(x;\mu,\sigma,a,b) =  \begin{cases} \frac{\frac{1}{\sigma}\phi(\frac{x - \mu}{\sigma})}{\Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}) } & \text{ if } a < x < b \\ 0 & \text{ otherwise } \end{cases}" alt="Probability density function (PDF) for a truncated normal distribution."> -->
     31 
     32 <div class="equation" align="center" data-raw-text="f(x;\mu,\sigma,a,b) =  \begin{cases} \frac{\frac{1}{\sigma}\phi(\frac{x - \mu}{\sigma})}{\Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}) } &amp; \text{ if } a &lt; x &lt; b \\ 0 &amp; \text{ otherwise } \end{cases}" data-equation="eq:truncated_normal_pdf">
     33     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/pdf/docs/img/equation_truncated_normal_pdf.svg" alt="Probability density function (PDF) for a truncated normal distribution.">
     34     <br>
     35 </div>
     36 
     37 <!-- </equation> -->
     38 
     39 where `Phi` and `phi` denote the [cumulative distribution function][cdf] and [density function][pdf] of the [normal][normal-distribution] distribution, respectively, `mu` is the location  and `sigma > 0` is the scale parameter of the distribution. `a` and `b` are the minimum and maximum support.
     40 
     41 </section>
     42 
     43 <!-- /.intro -->
     44 
     45 <section class="usage">
     46 
     47 ## Usage
     48 
     49 ```javascript
     50 var pdf = require( '@stdlib/stats/base/dists/truncated-normal/pdf' );
     51 ```
     52 
     53 #### pdf( x, a, b, mu, sigma )
     54 
     55 Evaluates the probability density function (PDF) for a [truncated normal][truncated-normal-distribution] distribution with lower limit `a`, upper limit `b`, location parameter `mu`, and scale parameter `sigma`.
     56 
     57 ```javascript
     58 var y = pdf( 0.9, 0.0, 1.0, 0.0, 1.0 );
     59 // returns ~0.7795
     60 
     61 y = pdf( 0.9, 0.0, 1.0, 0.5, 1.0 );
     62 // returns ~0.9617
     63 
     64 y = pdf( 0.9, -1.0, 1.0, 0.5, 1.0 );
     65 // returns ~0.5896
     66 
     67 y = pdf( 1.4, 0.0, 1.0, 0.0, 1.0 );
     68 // returns 0.0
     69 
     70 y = pdf( -0.9, 0.0, 1.0, 0.0, 1.0 );
     71 // returns 0.0
     72 ```
     73 
     74 If provided `NaN` as any argument, the function returns `NaN`.
     75 
     76 ```javascript
     77 var y = pdf( NaN, 0.0, 1.0, 0.5, 2.0 );
     78 // returns NaN
     79 
     80 y = pdf( 0.0, NaN, 1.0, 0.5, 2.0 );
     81 // returns NaN
     82 
     83 y = pdf( 0.0, 0.0, NaN, 0.5, 2.0 );
     84 // returns NaN
     85 
     86 y = pdf( 0.6, 0.0, 1.0, NaN, 2.0 );
     87 // returns NaN
     88 
     89 y = pdf( 0.6, 0.0, 1.0, 0.5, NaN );
     90 // returns NaN
     91 ```
     92 
     93 #### pdf.factory( a, b, mu, sigma )
     94 
     95 Returns a function for evaluating the [probability density function][pdf] (PDF) for a [truncated normal][truncated-normal-distribution] distribution.
     96 
     97 ```javascript
     98 var myPDF = pdf.factory( 0.0, 1.0, 0.0, 1.0 );
     99 var y = myPDF( 0.8 );
    100 // returns ~0.849
    101 
    102 myPDF = pdf.factory( 0.0, 1.0, 0.5, 1.0 );
    103 y = myPDF( 0.8 );
    104 // returns ~0.996
    105 ```
    106 
    107 </section>
    108 
    109 <!-- /.usage -->
    110 
    111 <section class="examples">
    112 
    113 ## Examples
    114 
    115 <!-- eslint no-undef: "error" -->
    116 
    117 ```javascript
    118 var randu = require( '@stdlib/random/base/randu' );
    119 var pdf = require( '@stdlib/stats/base/dists/truncated-normal/pdf' );
    120 
    121 var sigma;
    122 var mu;
    123 var a;
    124 var b;
    125 var x;
    126 var y;
    127 var i;
    128 
    129 for ( i = 0; i < 25; i++ ) {
    130     a = ( randu() * 80.0 ) - 40.0;
    131     b = a + ( randu() * 80.0 );
    132     x = ( randu() * 40.0 ) + a;
    133     mu = ( randu() * 20.0 ) - 10.0;
    134     sigma = ( randu() * 10.0 ) + 2.0;
    135     y = pdf( x, a, b, mu, sigma );
    136     console.log( 'x: %d, a: %d, b: %d, mu: %d, sigma: %d, f(x;a,b,mu,sigma): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
    137 }
    138 ```
    139 
    140 </section>
    141 
    142 <!-- /.examples -->
    143 
    144 <section class="links">
    145 
    146 [cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
    147 
    148 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    149 
    150 [normal-distribution]: https://en.wikipedia.org/wiki/Normal_distribution
    151 
    152 [truncated-normal-distribution]: https://en.wikipedia.org/wiki/Truncated_normal_distribution
    153 
    154 </section>
    155 
    156 <!-- /.links -->