time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4728B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Logarithm of Probability Density Function
     22 
     23 > [Triangular][triangular-distribution] distribution logarithm of [probability density function][pdf] (PDF).
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [triangular][triangular-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:triangular_pdf" align="center" raw="f(x;a,b,c)=\begin{cases} 0 & \text{for } x < a \\ \frac{2(x-a)}{(b-a)(c-a)} & \text{for } a \le x < c \\ \frac{2}{b-a} & \text{for } x = c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text{for } c < x \le b \\ 0 & \text{for } b < x \end{cases}" alt="Probability density function (PDF) for a triangular distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;a,b,c)=\begin{cases} 0 &amp; \text{for } x &lt; a \\ \frac{2(x-a)}{(b-a)(c-a)} &amp; \text{for } a \le x &lt; c \\ \frac{2}{b-a} &amp; \text{for } x = c \\ \frac{2(b-x)}{(b-a)(b-c)} &amp; \text{for } c &lt; x \le b \\ 0 &amp; \text{for } b &lt; x \end{cases}" data-equation="eq:triangular_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/triangular/logpdf/docs/img/equation_triangular_pdf.svg" alt="Probability density function (PDF) for a triangular distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `a` is the lower limit and `b` is the upper limit and `c` is the mode.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var logpdf = require( '@stdlib/stats/base/dists/triangular/logpdf' );
     50 ```
     51 
     52 #### logpdf( x, a, b, c )
     53 
     54 Evaluates the natural logarithm of the [probability density function][pdf] (PDF) for a [triangular][triangular-distribution] distribution with parameters `a` (lower limit), `b` (upper limit) and `c` (mode).
     55 
     56 ```javascript
     57 var y = logpdf( 0.5, -1.0, 1.0, 0.0 );
     58 // returns ~-0.693
     59 
     60 y = logpdf( 0.5, -1.0, 1.0, 0.5 );
     61 // returns 0.0
     62 
     63 y = logpdf( -10.0, -20.0, 0.0, -2.0 );
     64 // returns ~-2.89
     65 
     66 y = logpdf( -2.0, -1.0, 1.0, 0.0 );
     67 // returns -Infinity
     68 ```
     69 
     70 If provided `NaN` as any argument, the function returns `NaN`.
     71 
     72 ```javascript
     73 var y = logpdf( NaN, 0.0, 1.0, 0.5 );
     74 // returns NaN
     75 
     76 y = logpdf( 0.0, NaN, 1.0, 0.5 );
     77 // returns NaN
     78 
     79 y = logpdf( 0.0, 0.0, NaN, 0.5 );
     80 // returns NaN
     81 
     82 y = logpdf( 2.0, 1.0, 0.0, NaN );
     83 // returns NaN
     84 ```
     85 
     86 If provided parameters not satisfying `a <= c <= b`, the function returns `NaN`.
     87 
     88 ```javascript
     89 var y = logpdf( 1.0, 1.0, 0.0, 1.5 );
     90 // returns NaN
     91 
     92 y = logpdf( 1.0, 1.0, 0.0, -1.0 );
     93 // returns NaN
     94 
     95 y = logpdf( 1.0, 0.0, -1.0, 0.5 );
     96 // returns NaN
     97 ```
     98 
     99 #### logpdf.factory( a, b, c )
    100 
    101 Returns a function for evaluating the natural logarithm of the [probability density function][pdf] (PDF) of a [triangular][triangular-distribution] distribution with parameters `a` (lower limit), `b` (upper limit) and `c` (mode).
    102 
    103 ```javascript
    104 var mylogpdf = logpdf.factory( 0.0, 10.0, 5.0 );
    105 var y = mylogpdf( 2.0 );
    106 // returns ~-2.526
    107 
    108 y = mylogpdf( 12.0 );
    109 // returns -Infinity
    110 ```
    111 
    112 </section>
    113 
    114 <!-- /.usage -->
    115 
    116 <section class="notes">
    117 
    118 ## Notes
    119 
    120 -   In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow.
    121 
    122 </section>
    123 
    124 <!-- /.notes -->
    125 
    126 <section class="examples">
    127 
    128 ## Examples
    129 
    130 <!-- eslint no-undef: "error" -->
    131 
    132 ```javascript
    133 var randu = require( '@stdlib/random/base/randu' );
    134 var logpdf = require( '@stdlib/stats/base/dists/triangular/logpdf' );
    135 
    136 var a;
    137 var b;
    138 var c;
    139 var x;
    140 var y;
    141 var i;
    142 
    143 for ( i = 0; i < 25; i++ ) {
    144     x = randu() * 30.0;
    145     a = randu() * 10.0;
    146     b = a + (randu() * 40.0);
    147     c = a + ((b-a) * randu());
    148     y = logpdf( x, a, b, c );
    149     console.log( 'x: %d, a: %d, b: %d, c: %d, ln(f(x;a,b,c)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), y.toFixed( 4 ) );
    150 }
    151 ```
    152 
    153 </section>
    154 
    155 <!-- /.examples -->
    156 
    157 <section class="links">
    158 
    159 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    160 
    161 [triangular-distribution]: https://en.wikipedia.org/wiki/Triangular_distribution
    162 
    163 </section>
    164 
    165 <!-- /.links -->