time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4231B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Cumulative Distribution Function
     22 
     23 > [Triangular][triangular-distribution] distribution [cumulative distribution function][cdf].
     24 
     25 <section class="intro">
     26 
     27 The [cumulative distribution function][cdf] for a [triangular][triangular-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:triangular_cdf" align="center" raw="F(x;a,b,c) = \begin{cases} 0 & \text{for } x \leq a \\ \frac{(x-a)^2}{(b-a)(c-a)} & \text{for } a < x \leq c \\ 1-\frac{(b-x)^2}{(b-a)(b-c)} & \text{for } c < x < b \\ 1 & \text{for } b \leq x \end{cases}" alt="Cumulative distribution function for a Triangular distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="F(x;a,b,c) = \begin{cases} 0 &amp; \text{for } x \leq a \\ \frac{(x-a)^2}{(b-a)(c-a)} &amp; \text{for } a &lt; x \leq c \\ 1-\frac{(b-x)^2}{(b-a)(b-c)} &amp; \text{for } c &lt; x &lt; b \\ 1 &amp; \text{for } b \leq x \end{cases}" data-equation="eq:triangular_cdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/triangular/cdf/docs/img/equation_triangular_cdf.svg" alt="Cumulative distribution function for a Triangular distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `a` is the lower limit, `b` is the upper limit, and `c` is the mode.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var cdf = require( '@stdlib/stats/base/dists/triangular/cdf' );
     50 ```
     51 
     52 #### cdf( x, a, b, c )
     53 
     54 Evaluates the [cumulative distribution function][cdf] (CDF) for a [triangular][triangular-distribution] distribution with parameters `a` (lower limit), `b` (upper limit) and `c` (mode).
     55 
     56 ```javascript
     57 var y = cdf( 0.5, -1.0, 1.0, 0.0 );
     58 // returns 0.875
     59 
     60 y = cdf( 0.5, -1.0, 1.0, 0.5 );
     61 // returns 0.75
     62 
     63 y = cdf( -10.0, -20.0, 0.0, -2.0 );
     64 // returns ~0.278
     65 
     66 y = cdf( -2.0, -1.0, 1.0, 0.0 );
     67 // returns 0.0
     68 ```
     69 
     70 If provided `NaN` as any argument, the function returns `NaN`.
     71 
     72 ```javascript
     73 var y = cdf( NaN, 0.0, 1.0, 0.5 );
     74 // returns NaN
     75 
     76 y = cdf( 0.0, NaN, 1.0, 0.5 );
     77 // returns NaN
     78 
     79 y = cdf( 0.0, 0.0, NaN, 0.5 );
     80 // returns NaN
     81 
     82 y = cdf( 2.0, 1.0, 0.0, NaN );
     83 // returns NaN
     84 ```
     85 
     86 If provided parameters not satisfying `a <= c <= b`, the function returns `NaN`.
     87 
     88 ```javascript
     89 var y = cdf( 2.0, 1.0, 0.0, 1.5 );
     90 // returns NaN
     91 
     92 y = cdf( 2.0, 1.0, 0.0, -1.0 );
     93 // returns NaN
     94 
     95 y = cdf( 2.0, 0.0, -1.0, 0.5 );
     96 // returns NaN
     97 ```
     98 
     99 #### cdf.factory( a, b, c )
    100 
    101 Returns a function for evaluating the [cumulative distribution function][cdf] of a [triangular][triangular-distribution] distribution with parameters `a` (lower limit), `b` (upper limit) and `c` (mode).
    102 
    103 ```javascript
    104 var mycdf = cdf.factory( 0.0, 10.0, 2.0 );
    105 var y = mycdf( 0.5 );
    106 // returns 0.0125
    107 
    108 y = mycdf( 8.0 );
    109 // returns 0.95
    110 ```
    111 
    112 </section>
    113 
    114 <!-- /.usage -->
    115 
    116 <section class="examples">
    117 
    118 ## Examples
    119 
    120 <!-- eslint no-undef: "error" -->
    121 
    122 ```javascript
    123 var randu = require( '@stdlib/random/base/randu' );
    124 var cdf = require( '@stdlib/stats/base/dists/triangular/cdf' );
    125 
    126 var a;
    127 var b;
    128 var c;
    129 var x;
    130 var y;
    131 var i;
    132 
    133 for ( i = 0; i < 25; i++ ) {
    134     x = randu() * 30.0;
    135     a = randu() * 10.0;
    136     b = a + (randu() * 40.0);
    137     c = a + ((b-a) * randu());
    138     y = cdf( x, a, b, c );
    139     console.log( 'x: %d, a: %d, b: %d, c: %d, F(x;a,b,c): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), c.toFixed( 4 ), y.toFixed( 4 ) );
    140 }
    141 ```
    142 
    143 </section>
    144 
    145 <!-- /.examples -->
    146 
    147 <section class="links">
    148 
    149 [cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
    150 
    151 [triangular-distribution]: https://en.wikipedia.org/wiki/Triangular_distribution
    152 
    153 </section>
    154 
    155 <!-- /.links -->