time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (3318B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Probability Density Function
     22 
     23 > [Student's t][t-distribution] distribution probability density function (PDF).
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [t distribution][t-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:t_pdf" align="center" raw="\frac{1} {\sqrt{\nu}\,B\left( \tfrac{1}{2}, \tfrac{\nu}{2} \right )} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}" alt="Probability density function (PDF) for a Student's t distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="\frac{1} {\sqrt{\nu}\,B\left( \tfrac{1}{2}, \tfrac{\nu}{2} \right )} \left(1+\frac{x^2}{\nu} \right)^{-\frac{\nu+1}{2}}" data-equation="eq:t_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/stats/base/dists/t/pdf/docs/img/equation_t_pdf.svg" alt="Probability density function (PDF) for a Student's t distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `v > 0` is the degrees of freedom.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var pdf = require( '@stdlib/stats/base/dists/t/pdf' );
     50 ```
     51 
     52 #### pdf( x, v )
     53 
     54 Evaluates the [probability density function][pdf] (PDF) for a [Student's t][t-distribution] distribution with degrees of freedom `v`.
     55 
     56 ```javascript
     57 var y = pdf( 0.3, 4.0 );
     58 // returns ~0.355
     59 
     60 y = pdf( 2.0, 0.7 );
     61 // returns ~0.058
     62 
     63 y = pdf( -1.0, 0.5 );
     64 // returns ~0.118
     65 ```
     66 
     67 If provided `NaN` as any argument, the function returns `NaN`.
     68 
     69 ```javascript
     70 var y = pdf( NaN, 1.0 );
     71 // returns NaN
     72 
     73 y = pdf( 0.0, NaN );
     74 // returns NaN
     75 ```
     76 
     77 If provided `v <= 0`, the function returns `NaN`.
     78 
     79 ```javascript
     80 var y = pdf( 2.0, -1.0 );
     81 // returns NaN
     82 
     83 y = pdf( 2.0, 0.0 );
     84 // returns NaN
     85 ```
     86 
     87 #### pdf.factory( v )
     88 
     89 Returns a `function` for evaluating the [PDF][pdf] of a [Student's t][t-distribution] distribution with degrees of freedom `v`.
     90 
     91 ```javascript
     92 var mypdf = pdf.factory( 1.0 );
     93 var y = mypdf( 3.0 );
     94 // returns ~0.032
     95 
     96 y = mypdf( 1.0 );
     97 // returns ~0.159
     98 ```
     99 
    100 </section>
    101 
    102 <!-- /.usage -->
    103 
    104 <section class="examples">
    105 
    106 ## Examples
    107 
    108 <!-- eslint no-undef: "error" -->
    109 
    110 ```javascript
    111 var randu = require( '@stdlib/random/base/randu' );
    112 var pdf = require( '@stdlib/stats/base/dists/t/pdf' );
    113 
    114 var v;
    115 var x;
    116 var y;
    117 var i;
    118 
    119 for ( i = 0; i < 10; i++ ) {
    120     x = (randu() * 6.0) - 3.0;
    121     v = randu() * 10.0;
    122     y = pdf( x, v );
    123     console.log( 'x: %d, v: %d, f(x;v): %d', x, v, y );
    124 }
    125 ```
    126 
    127 </section>
    128 
    129 <!-- /.examples -->
    130 
    131 <section class="links">
    132 
    133 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    134 
    135 [t-distribution]: https://en.wikipedia.org/wiki/Student%27s_t-distribution
    136 
    137 </section>
    138 
    139 <!-- /.links -->