logcdf.js (2119B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var betainc = require( '@stdlib/math/base/special/betainc' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var log1p = require( '@stdlib/math/base/special/log1p' ); 26 var pow = require( '@stdlib/math/base/special/pow' ); 27 var ln = require( '@stdlib/math/base/special/ln' ); 28 var LN_HALF = require( '@stdlib/constants/float64/ln-half' ); 29 30 31 // MAIN // 32 33 /** 34 * Evaluates the natural logarithm of the cumulative distribution function (CDF) for a Student's t distribution with degrees of freedom `v` at a value `x`. 35 * 36 * @param {number} x - input value 37 * @param {PositiveNumber} v - degrees of freedom 38 * @returns {number} evaluated logCDF 39 * 40 * @example 41 * var y = logcdf( 2.0, 0.1 ); 42 * // returns ~-0.493 43 * 44 * @example 45 * var y = logcdf( 1.0, 2.0 ); 46 * // returns ~-0.237 47 * 48 * @example 49 * var y = logcdf( -1.0, 4.0 ); 50 * // returns ~-1.677 51 * 52 * @example 53 * var y = logcdf( NaN, 1.0 ); 54 * // returns NaN 55 * 56 * @example 57 * var y = logcdf( 0.0, NaN ); 58 * // returns NaN 59 * 60 * @example 61 * var y = logcdf( 2.0, -1.0 ); 62 * // returns NaN 63 */ 64 function logcdf( x, v ) { 65 var x2; 66 var p; 67 var z; 68 if ( 69 isnan( x ) || 70 isnan( v ) || 71 v <= 0.0 72 ) { 73 return NaN; 74 } 75 if ( x === 0.0 ) { 76 return LN_HALF; 77 } 78 x2 = pow( x, 2.0 ); 79 if ( v > 2.0*x2 ) { 80 z = x2 / ( v + x2 ); 81 p = betainc( z, 0.5, v/2.0, true, true ) / 2.0; 82 } else { 83 z = v / ( v + x2 ); 84 p = betainc( z, v/2.0, 0.5, true, false ) / 2.0; 85 } 86 return ( x > 0.0 ) ? log1p( -p ) : ln( p ); 87 } 88 89 90 // EXPORTS // 91 92 module.exports = logcdf;