README.md (4115B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Cumulative Distribution Function 22 23 > Evaluate the natural logarithm of the [cumulative distribution function][cdf] (CDF) for a [Student's t][t-distribution] distribution. 24 25 <section class="intro"> 26 27 The [cumulative distribution function][cdf] (CDF) for a [t distribution][t-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:t_cdf" align="center" raw="F(x;\nu) = 1 - \frac{1}{2} \frac{\operatorname{Beta}(\tfrac{\nu}{\nu + x^2};\,\tfrac{\nu}{2},\tfrac{1}{2})}{\operatorname{Beta}(\tfrac{\nu}{2}, \tfrac{1}{2})}" alt="Cumulative distribution function (CDF) for a Student's t distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="F(x;\nu) = 1 - \frac{1}{2} \frac{\operatorname{Beta}(\tfrac{\nu}{\nu + x^2};\,\tfrac{\nu}{2},\tfrac{1}{2})}{\operatorname{Beta}(\tfrac{\nu}{2}, \tfrac{1}{2})}" data-equation="eq:t_cdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/t/logcdf/docs/img/equation_t_cdf.svg" alt="Cumulative distribution function (CDF) for a Student's t distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `v > 0` is the degrees of freedom. In the definition, `Beta( x; a, b )` denotes the lower incomplete beta function and `Beta( a, b )` the [beta function][beta-function]. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logcdf = require( '@stdlib/stats/base/dists/t/logcdf' ); 50 ``` 51 52 #### logcdf( x, v ) 53 54 Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF) for a [Student's t][t-distribution] distribution with degrees of freedom `v`. 55 56 ```javascript 57 var y = logcdf( 2.0, 0.1 ); 58 // returns ~-0.493 59 60 y = logcdf( 1.0, 2.0 ); 61 // returns ~-0.237 62 63 y = logcdf( -1.0, 4.0 ); 64 // returns ~-1.677 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = logcdf( NaN, 1.0 ); 71 // returns NaN 72 73 y = logcdf( 0.0, NaN ); 74 // returns NaN 75 ``` 76 77 If provided `v <= 0`, the function returns `NaN`. 78 79 ```javascript 80 var y = logcdf( 2.0, -1.0 ); 81 // returns NaN 82 83 y = logcdf( 2.0, 0.0 ); 84 // returns NaN 85 ``` 86 87 #### logcdf.factory( v ) 88 89 Returns a `function` for evaluating the natural logarithm of the [CDF][cdf] of a [Student's t][t-distribution] distribution with degrees of freedom `v`. 90 91 ```javascript 92 var mylogcdf = logcdf.factory( 0.5 ); 93 var y = mylogcdf( 3.0 ); 94 // returns ~-0.203 95 96 y = mylogcdf( 1.0 ); 97 // returns ~-0.358 98 ``` 99 100 </section> 101 102 <!-- /.usage --> 103 104 <section class="notes"> 105 106 ## Notes 107 108 - In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow. 109 110 </section> 111 112 <!-- /.notes --> 113 114 <section class="examples"> 115 116 ## Examples 117 118 <!-- eslint no-undef: "error" --> 119 120 ```javascript 121 var randu = require( '@stdlib/random/base/randu' ); 122 var logcdf = require( '@stdlib/stats/base/dists/t/logcdf' ); 123 124 var v; 125 var x; 126 var y; 127 var i; 128 129 for ( i = 0; i < 10; i++ ) { 130 x = (randu() * 6.0) - 3.0; 131 v = randu() * 10.0; 132 y = logcdf( x, v ); 133 console.log( 'x: %d, v: %d, ln(F(x;v)): %d', x.toFixed( 4 ), v.toFixed( 4 ), y.toFixed( 4 ) ); 134 } 135 ``` 136 137 </section> 138 139 <!-- /.examples --> 140 141 <section class="links"> 142 143 [beta-function]: https://en.wikipedia.org/wiki/Beta_function 144 145 [cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function 146 147 [t-distribution]: https://en.wikipedia.org/wiki/Student%27s_t-distribution 148 149 </section> 150 151 <!-- /.links -->