time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1460B)


      1 
      2 {{alias}}( x, sigma )
      3     Evaluates the probability density function (PDF) for a Rayleigh
      4     distribution with scale parameter `sigma` at a value `x`.
      5 
      6     If provided `NaN` as any argument, the function returns `NaN`.
      7 
      8     If provided a negative value for `sigma`, the function returns `NaN`.
      9 
     10     Parameters
     11     ----------
     12     x: number
     13         Input value.
     14 
     15     sigma: number
     16         Scale parameter.
     17 
     18     Returns
     19     -------
     20     out: number
     21         Evaluated PDF.
     22 
     23     Examples
     24     --------
     25     > var y = {{alias}}( 0.3, 1.0 )
     26     ~0.287
     27     > y = {{alias}}( 2.0, 0.8 )
     28     ~0.137
     29     > y = {{alias}}( -1.0, 0.5 )
     30     0.0
     31     > y = {{alias}}( 0.0, NaN )
     32     NaN
     33     > y = {{alias}}( NaN, 2.0 )
     34     NaN
     35 
     36     // Negative scale parameter:
     37     > y = {{alias}}( 2.0, -1.0 )
     38     NaN
     39 
     40     // Degenerate distribution when `sigma = 0.0`:
     41     > y = {{alias}}( -2.0, 0.0 )
     42     0.0
     43     > y = {{alias}}( 0.0, 0.0 )
     44     Infinity
     45     > y = {{alias}}( 2.0, 0.0 )
     46     0.0
     47 
     48 
     49 {{alias}}.factory( sigma )
     50     Returns a function for evaluating the probability density function (PDF) of
     51     a Rayleigh distribution with scale parameter `sigma`.
     52 
     53     Parameters
     54     ----------
     55     sigma: number
     56         Scale parameter.
     57 
     58     Returns
     59     -------
     60     pdf: Function
     61         Probability density function (PDF).
     62 
     63     Examples
     64     --------
     65     > var myPDF = {{alias}}.factory( 4.0 );
     66     > var y = myPDF( 6.0 )
     67     ~0.122
     68     > y = myPDF( 4.0 )
     69     ~0.152
     70 
     71     See Also
     72     --------
     73