logpdf.js (2003B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var pow = require( '@stdlib/math/base/special/pow' ); 25 var ln = require( '@stdlib/math/base/special/ln' ); 26 var PINF = require( '@stdlib/constants/float64/pinf' ); 27 var NINF = require( '@stdlib/constants/float64/ninf' ); 28 29 30 // MAIN // 31 32 /** 33 * Evaluates the logarithm of the probability density function (PDF) for a Rayleigh distribution with scale parameter `sigma` at a value `x`. 34 * 35 * @param {number} x - input value 36 * @param {NonNegativeNumber} sigma - scale parameter 37 * @returns {number} evaluated logPDF 38 * 39 * @example 40 * var y = logpdf( 0.3, 1.0 ); 41 * // returns ~-1.249 42 * 43 * @example 44 * var y = logpdf( 2.0, 0.8 ); 45 * // returns ~-1.986 46 * 47 * @example 48 * var y = logpdf( -1.0, 0.5 ); 49 * // returns -Infinity 50 * 51 * @example 52 * var y = logpdf( 0.0, NaN ); 53 * // returns NaN 54 * 55 * @example 56 * var y = logpdf( NaN, 2.0 ); 57 * // returns NaN 58 * 59 * @example 60 * // Negative scale parameter: 61 * var y = logpdf( 2.0, -1.0 ); 62 * // returns NaN 63 */ 64 function logpdf( x, sigma ) { 65 var s2i; 66 var s2; 67 if ( 68 isnan( x ) || 69 isnan( sigma ) || 70 sigma < 0.0 71 ) { 72 return NaN; 73 } 74 if ( sigma === 0.0 ) { 75 return ( x === 0.0 ) ? PINF : NINF; 76 } 77 if ( x < 0.0 || x === PINF ) { 78 return NINF; 79 } 80 s2 = pow( sigma, 2.0 ); 81 s2i = 1.0 / s2; 82 return ln( s2i * x ) - (pow( x, 2.0 ) / ( 2.0 * s2 )); 83 } 84 85 86 // EXPORTS // 87 88 module.exports = logpdf;