time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4249B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Logarithm of Probability Density Function
     22 
     23 > [Rayleigh][rayleigh-distribution] distribution logarithm of [probability density function][pdf] (PDF).
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [Rayleigh][rayleigh-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:rayleigh_pdf" align="center" raw="f(x;\sigma) = \begin{cases} \frac{x}{\sigma^2} e^{-x^2/(2\sigma^2)} &amp; \text{ for } x \ge 0 \\ 0 & \text{ otherwise } \end{cases}" alt="Probability density function (PDF) for a Rayleigh distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\sigma) = \begin{cases} \frac{x}{\sigma^2} e^{-x^2/(2\sigma^2)} &amp;amp; \text{ for } x \ge 0 \\ 0 &amp; \text{ otherwise } \end{cases}" data-equation="eq:rayleigh_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/rayleigh/logpdf/docs/img/equation_rayleigh_pdf.svg" alt="Probability density function (PDF) for a Rayleigh distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `sigma > 0` is the scale parameter.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var logpdf = require( '@stdlib/stats/base/dists/rayleigh/logpdf' );
     50 ```
     51 
     52 #### logpdf( x, sigma )
     53 
     54 Evaluates the logarithm of the [probability density function][pdf] for a [Rayleigh][rayleigh-distribution] distribution with scale parameter `sigma`.
     55 
     56 ```javascript
     57 var y = logpdf( 0.3, 1.0 );
     58 // returns ~-1.249
     59 
     60 y = logpdf( 2.0, 0.8 );
     61 // returns ~-1.986
     62 
     63 y = logpdf( -1.0, 0.5 );
     64 // returns -Infinity
     65 ```
     66 
     67 If provided `NaN` as any argument, the function returns `NaN`.
     68 
     69 ```javascript
     70 var y = logpdf( NaN, 1.0 );
     71 // returns NaN
     72 
     73 y = logpdf( 0.0, NaN );
     74 // returns NaN
     75 ```
     76 
     77 If provided `sigma < 0`, the function returns `NaN`.
     78 
     79 ```javascript
     80 var y = logpdf( 2.0, -1.0 );
     81 // returns NaN
     82 ```
     83 
     84 If provided `sigma = 0`, the function evaluates the [PDF][pdf] of a [degenerate distribution][degenerate-distribution] centered at `0`.
     85 
     86 ```javascript
     87 var y = logpdf( -2.0, 0.0 );
     88 // returns -Infinity
     89 
     90 y = logpdf( 0.0, 0.0 );
     91 // returns +Infinity
     92 
     93 y = logpdf( 2.0, 0.0 );
     94 // returns -Infinity
     95 ```
     96 
     97 #### logpdf.factory( sigma )
     98 
     99 Returns a function for evaluating the logarithm of the [probability density function][pdf] (PDF) of a [Rayleigh][rayleigh-distribution] distribution with parameter `sigma` (scale parameter).
    100 
    101 ```javascript
    102 var mylogpdf = logpdf.factory( 4.0 );
    103 
    104 var y = mylogpdf( 6.0 );
    105 // returns ~-2.106
    106 
    107 y = mylogpdf( 4.0 );
    108 // returns ~-1.886
    109 ```
    110 
    111 </section>
    112 
    113 <!-- /.usage -->
    114 
    115 <section class="notes">
    116 
    117 ## Notes
    118 
    119 -   In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow.
    120 
    121 </section>
    122 
    123 <!-- /.notes -->
    124 
    125 <section class="examples">
    126 
    127 ## Examples
    128 
    129 <!-- eslint no-undef: "error" -->
    130 
    131 ```javascript
    132 var randu = require( '@stdlib/random/base/randu' );
    133 var logpdf = require( '@stdlib/stats/base/dists/rayleigh/logpdf' );
    134 
    135 var sigma;
    136 var x;
    137 var y;
    138 var i;
    139 
    140 for ( i = 0; i < 10; i++ ) {
    141     x = randu() * 10.0;
    142     sigma = randu() * 10.0;
    143     y = logpdf( x, sigma );
    144     console.log( 'x: %d, σ: %d, f(x;σ): %d', x.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
    145 }
    146 ```
    147 
    148 </section>
    149 
    150 <!-- /.examples -->
    151 
    152 <section class="links">
    153 
    154 [degenerate-distribution]: https://en.wikipedia.org/wiki/Degenerate_distribution
    155 
    156 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    157 
    158 [rayleigh-distribution]: https://en.wikipedia.org/wiki/Rayleigh_distribution
    159 
    160 </section>
    161 
    162 <!-- /.links -->