README.md (4218B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Cumulative Distribution Function 22 23 > [Rayleigh][rayleigh-distribution] distribution logarithm of [cumulative distribution function][cdf]. 24 25 <section class="intro"> 26 27 The [cumulative distribution function][cdf] for a [Rayleigh][rayleigh-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:rayleigh_cdf" align="center" raw="F(x;\sigma) = \begin{cases} 0 & \text{ for } x < 0 \\ 1 - e^{-x^2/2\sigma^2} & \text{ for } x \ge 0 \end{cases}" alt="Cumulative distribution function for a Rayleigh distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="F(x;\sigma) = \begin{cases} 0 & \text{ for } x < 0 \\ 1 - e^{-x^2/2\sigma^2} & \text{ for } x \ge 0 \end{cases}" data-equation="eq:rayleigh_cdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/rayleigh/logcdf/docs/img/equation_rayleigh_cdf.svg" alt="Cumulative distribution function for a Rayleigh distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `sigma > 0` is the scale parameter. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logcdf = require( '@stdlib/stats/base/dists/rayleigh/logcdf' ); 50 ``` 51 52 #### logcdf( x, sigma ) 53 54 Evaluates the logarithm of the [cumulative distribution function][cdf] for a [Rayleigh][rayleigh-distribution] distribution with scale parameter `sigma`. 55 56 ```javascript 57 var y = logcdf( 2.0, 3.0 ); 58 // returns ~-1.613 59 60 y = logcdf( 1.0, 2.0 ); 61 // returns ~-2.141 62 63 y = logcdf( -1.0, 4.0 ); 64 // returns -Infinity 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = logcdf( NaN, 1.0 ); 71 // returns NaN 72 73 y = logcdf( 0.0, NaN ); 74 // returns NaN 75 ``` 76 77 If provided `sigma < 0`, the function returns `NaN`. 78 79 ```javascript 80 var y = logcdf( 2.0, -1.0 ); 81 // returns NaN 82 ``` 83 84 If provided `sigma = 0`, the function evaluates the logarithm of the [CDF][cdf] for a [degenerate distribution][degenerate-distribution] centered at `0`. 85 86 ```javascript 87 var y = logcdf( -2.0, 0.0 ); 88 // returns -Infinity 89 90 y = logcdf( 0.0, 0.0 ); 91 // returns 0.0 92 93 y = logcdf( 2.0, 0.0 ); 94 // returns 0.0 95 ``` 96 97 #### logcdf.factory( sigma ) 98 99 Returns a function for evaluating the logarithm of the [cumulative distribution function][cdf] of a [Rayleigh][rayleigh-distribution] distribution with parameter `sigma` (scale parameter). 100 101 ```javascript 102 var mylogCDF = logcdf.factory( 0.5 ); 103 y = mylogCDF( 1.0 ); 104 // returns ~-0.145 105 106 y = mylogCDF( 0.5 ); 107 // returns ~-0.933 108 ``` 109 110 </section> 111 112 <!-- /.usage --> 113 114 <section class="notes"> 115 116 ## Notes 117 118 - In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow. 119 120 </section> 121 122 <!-- /.notes --> 123 124 <section class="examples"> 125 126 ## Examples 127 128 <!-- eslint no-undef: "error" --> 129 130 ```javascript 131 var randu = require( '@stdlib/random/base/randu' ); 132 var logcdf = require( '@stdlib/stats/base/dists/rayleigh/logcdf' ); 133 134 var sigma; 135 var x; 136 var y; 137 var i; 138 139 for ( i = 0; i < 10; i++ ) { 140 x = randu() * 10.0; 141 sigma = randu() * 10.0; 142 y = logcdf( x, sigma ); 143 console.log( 'x: %d, σ: %d, log(F(x;σ)): %d', x.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) ); 144 } 145 ``` 146 147 </section> 148 149 <!-- /.examples --> 150 151 <section class="links"> 152 153 [degenerate-distribution]: https://en.wikipedia.org/wiki/Degenerate_distribution 154 155 [cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function 156 157 [rayleigh-distribution]: https://en.wikipedia.org/wiki/Rayleigh_distribution 158 159 </section> 160 161 <!-- /.links -->