README.md (4100B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Probability Mass Function 22 23 > Evaluate the natural logarithm of the [probability mass function][pmf] (PMF) for a [Poisson][poisson-distribution] distribution. 24 25 <section class="intro"> 26 27 The [probability mass function][pmf] (PMF) for a [Poisson][poisson-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:poisson_pmf" align="center" raw="f(x;\lambda)=P(X=x;\lambda)=\begin{cases} \tfrac{\lambda^x}{x!}e^{-\lambda} & \text{ for } x = 0,1,2,\ldots \\ 0 & \text{ otherwise} \end{cases}" alt="Probability mass function (PMF) for a Poisson distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="f(x;\lambda)=P(X=x;\lambda)=\begin{cases} \tfrac{\lambda^x}{x!}e^{-\lambda} & \text{ for } x = 0,1,2,\ldots \\ 0 & \text{ otherwise} \end{cases}" data-equation="eq:poisson_pmf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/poisson/logpmf/docs/img/equation_poisson_pmf.svg" alt="Probability mass function (PMF) for a Poisson distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `lambda > 0` is the mean parameter. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logpmf = require( '@stdlib/stats/base/dists/poisson/logpmf' ); 50 ``` 51 52 #### logpmf( x, lambda ) 53 54 Evaluates the natural logarithm of the [probability mass function][pmf] (PMF) for a [Poisson][poisson-distribution] distribution with mean parameter `lambda`. 55 56 ```javascript 57 var y = logpmf( 4.0, 3.0 ); 58 // returns ~-1.784 59 60 y = logpmf( 1.0, 3.0 ); 61 // returns ~-1.901 62 63 y = logpmf( -1.0, 2.0 ); 64 // returns -Infinity 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = logpmf( NaN, 2.0 ); 71 // returns NaN 72 73 y = logpmf( 0.0, NaN ); 74 // returns NaN 75 ``` 76 77 If provided a negative mean parameter `lambda`, the function returns `NaN`. 78 79 ```javascript 80 var y = logpmf( 2.0, -1.0 ); 81 // returns NaN 82 83 y = logpmf( 4.0, -2.0 ); 84 // returns NaN 85 ``` 86 87 If provided `lambda = 0`, the function evaluates the natural logarithm of the [PMF][pmf] of a [degenerate distribution][degenerate-distribution] centered at `0.0`. 88 89 ```javascript 90 var y = logpmf( 2.0, 0.0 ); 91 // returns -Infinity 92 93 y = logpmf( 0.0, 0.0 ); 94 // returns 0.0 95 ``` 96 97 #### logpmf.factory( lambda ) 98 99 Returns a function for evaluating the natural logarithm of the [probability mass function][pmf] (PMF) for a [Poisson][poisson-distribution] distribution with mean parameter `lambda`. 100 101 ```javascript 102 var mylogpmf = logpmf.factory( 1.0 ); 103 var y = mylogpmf( 3.0 ); 104 // returns ~-2.792 105 106 y = mylogpmf( 1.0 ); 107 // returns ~-1.0 108 ``` 109 110 </section> 111 112 <!-- /.usage --> 113 114 <section class="examples"> 115 116 ## Examples 117 118 <!-- eslint no-undef: "error" --> 119 120 ```javascript 121 var randu = require( '@stdlib/random/base/randu' ); 122 var round = require( '@stdlib/math/base/special/round' ); 123 var logpmf = require( '@stdlib/stats/base/dists/poisson/logpmf' ); 124 125 var lambda; 126 var x; 127 var y; 128 var i; 129 130 for ( i = 0; i < 10; i++ ) { 131 x = round( randu() * 10.0 ); 132 lambda = randu() * 10.0; 133 y = logpmf( x, lambda ); 134 console.log( 'x: %d, λ: %d, ln(P(X=x;λ)): %d', x, lambda.toFixed( 4 ), y.toFixed( 4 ) ); 135 } 136 ``` 137 138 </section> 139 140 <!-- /.examples --> 141 142 <section class="links"> 143 144 [degenerate-distribution]: https://en.wikipedia.org/wiki/Degenerate_distribution 145 146 [poisson-distribution]: https://en.wikipedia.org/wiki/Poisson_distribution 147 148 [pmf]: https://en.wikipedia.org/wiki/Probability_mass_function 149 150 </section> 151 152 <!-- /.links -->