quantile.js (2057B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var erfinv = require( '@stdlib/math/base/special/erfinv' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 26 27 28 // MAIN // 29 30 /** 31 * Evaluates the quantile function for a normal distribution with mean `mu` and standard deviation `sigma` at a probability `p`. 32 * 33 * @param {Probability} p - input value 34 * @param {number} mu - mean 35 * @param {NonNegativeNumber} sigma - standard deviation 36 * @returns {number} evaluated quantile function 37 * 38 * @example 39 * var y = quantile( 0.8, 0.0, 1.0 ); 40 * // returns ~0.842 41 * 42 * @example 43 * var y = quantile( 0.5, 4.0, 2.0 ); 44 * // returns 4.0 45 * 46 * @example 47 * var y = quantile( 1.1, 0.0, 1.0 ); 48 * // returns NaN 49 * 50 * @example 51 * var y = quantile( -0.2, 0.0, 1.0 ); 52 * // returns NaN 53 * 54 * @example 55 * var y = quantile( NaN, 0.0, 1.0 ); 56 * // returns NaN 57 * 58 * @example 59 * var y = quantile( 0.0, NaN, 1.0 ); 60 * // returns NaN 61 * 62 * @example 63 * var y = quantile( 0.0, 0.0, NaN ); 64 * // returns NaN 65 * 66 * @example 67 * // Negative standard deviation: 68 * var y = quantile( 0.5, 0.0, -1.0 ); 69 * // returns NaN 70 */ 71 function quantile( p, mu, sigma ) { 72 var A; 73 var B; 74 75 if ( 76 isnan( mu ) || 77 isnan( sigma ) || 78 isnan( p ) || 79 sigma < 0.0 || 80 p < 0.0 || 81 p > 1.0 82 ) { 83 return NaN; 84 } 85 if ( sigma === 0.0 ) { 86 return mu; 87 } 88 A = mu; 89 B = sigma * sqrt( 2.0 ); 90 return A + (B * erfinv( (2.0*p) - 1.0 )); 91 } 92 93 94 // EXPORTS // 95 96 module.exports = quantile;