cdf.js (1971B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var erfc = require( '@stdlib/math/base/special/erfc' ); 24 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 25 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 26 27 28 // MAIN // 29 30 /** 31 * Evaluates the cumulative distribution function (CDF) for a Normal distribution with mean `mu` and standard deviation `sigma` at a value `x`. 32 * 33 * @param {number} x - input value 34 * @param {number} mu - mean 35 * @param {NonNegativeNumber} sigma - standard deviation 36 * @returns {Probability} evaluated cumulative distribution function 37 * 38 * @example 39 * var y = cdf( 2.0, 0.0, 1.0 ); 40 * // returns ~0.977 41 * 42 * @example 43 * var y = cdf( -1.0, -1.0, 2.0 ); 44 * // returns 0.5 45 * 46 * @example 47 * var y = cdf( -1.0, 4.0, 2.0 ); 48 * // returns ~0.006 49 * 50 * @example 51 * var y = cdf( NaN, 0.0, 1.0 ); 52 * // returns NaN 53 * 54 * @example 55 * var y = cdf( 0.0, NaN, 1.0 ); 56 * // returns NaN 57 * 58 * @example 59 * var y = cdf( 0.0, 0.0, NaN ); 60 * // returns NaN 61 * 62 * @example 63 * // Negative standard deviation: 64 * var y = cdf( 2.0, 0.0, -1.0 ); 65 * // returns NaN 66 */ 67 function cdf( x, mu, sigma ) { 68 var denom; 69 var xc; 70 if ( 71 isnan( x ) || 72 isnan( mu ) || 73 isnan( sigma ) || 74 sigma < 0.0 75 ) { 76 return NaN; 77 } 78 if ( sigma === 0.0 ) { 79 return (x < mu) ? 0.0 : 1.0; 80 } 81 denom = sigma * sqrt( 2.0 ); 82 xc = x - mu; 83 return 0.5 * erfc( -xc/denom ); 84 } 85 86 87 // EXPORTS // 88 89 module.exports = cdf;