time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1860B)


      1 
      2 {{alias}}( x, r, p )
      3     Evaluates the moment-generating function (MGF) for a negative binomial
      4     distribution with number of successes until experiment is stopped `r` and
      5     success probability `p` at a value `t`.
      6 
      7     If provided `NaN` as any argument, the function returns `NaN`.
      8 
      9     If provided a `r` which is not a positive number, the function returns
     10     `NaN`.
     11 
     12     If provided a success probability `p` outside of `[0,1]`, the function
     13     returns `NaN`.
     14 
     15     Parameters
     16     ----------
     17     x: number
     18         Input value.
     19 
     20     r: number
     21         Number of successes until experiment is stopped.
     22 
     23     p: number
     24         Success probability.
     25 
     26     Returns
     27     -------
     28     out: number
     29         Evaluated MGF.
     30 
     31     Examples
     32     --------
     33     > var y = {{alias}}( 0.05, 20.0, 0.8 )
     34     ~267.839
     35     > y = {{alias}}( 0.1, 20.0, 0.1 )
     36     ~9.347
     37     > y = {{alias}}( 0.5, 10.0, 0.4 )
     38     ~42822.023
     39 
     40     > y = {{alias}}( 0.1, 0.0, 0.5 )
     41     NaN
     42     > y = {{alias}}( 0.1, -2.0, 0.5 )
     43     NaN
     44 
     45     > y = {{alias}}( NaN, 20.0, 0.5 )
     46     NaN
     47     > y = {{alias}}( 0.0, NaN, 0.5 )
     48     NaN
     49     > y = {{alias}}( 0.0, 20.0, NaN )
     50     NaN
     51 
     52     > y = {{alias}}( 0.2, 20, -1.0 )
     53     NaN
     54     > y = {{alias}}( 0.2, 20, 1.5 )
     55     NaN
     56 
     57 
     58 {{alias}}.factory( r, p )
     59     Returns a function for evaluating the moment-generating function (MGF) of a
     60     negative binomial distribution with number of successes until experiment is
     61     stopped `r` and success probability `p`.
     62 
     63     Parameters
     64     ----------
     65     r: number
     66         Number of successes until experiment is stopped.
     67 
     68     p: number
     69         Success probability.
     70 
     71     Returns
     72     -------
     73     mgf: Function
     74         Moment-generating function (MGF).
     75 
     76     Examples
     77     --------
     78     > var myMGF = {{alias}}.factory( 4.3, 0.4 );
     79     > var y = myMGF( 0.2 )
     80     ~4.696
     81     > y = myMGF( 0.4 )
     82     ~30.83
     83 
     84     See Also
     85     --------
     86