time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (2019B)


      1 
      2 {{alias}}( x, r, p )
      3     Evaluates the cumulative distribution function (CDF) for a negative binomial
      4     distribution with number of successes until experiment is stopped `r` and
      5     success probability `p` at a value `x`.
      6 
      7     If provided `NaN` as any argument, the function returns `NaN`.
      8 
      9     If provided a `r` which is not a positive number, the function returns
     10     `NaN`.
     11 
     12     If provided a success probability `p` outside of `[0,1]`, the function
     13     returns `NaN`.
     14 
     15     Parameters
     16     ----------
     17     x: number
     18         Input value.
     19 
     20     r: number
     21         Number of successes until experiment is stopped.
     22 
     23     p: number
     24         Success probability.
     25 
     26     Returns
     27     -------
     28     out: number
     29         Evaluated CDF.
     30 
     31     Examples
     32     --------
     33     > var y = {{alias}}( 5.0, 20.0, 0.8 )
     34     ~0.617
     35     > y = {{alias}}( 21.0, 20.0, 0.5 )
     36     ~0.622
     37     > y = {{alias}}( 5.0, 10.0, 0.4 )
     38     ~0.034
     39     > y = {{alias}}( 0.0, 10.0, 0.9 )
     40     ~0.349
     41     > y = {{alias}}( 21.0, 15.5, 0.5 )
     42     ~0.859
     43     > y = {{alias}}( 5.0, 7.4, 0.4 )
     44     ~0.131
     45 
     46     > y = {{alias}}( 2.0, 0.0, 0.5 )
     47     NaN
     48     > y = {{alias}}( 2.0, -2.0, 0.5 )
     49     NaN
     50 
     51     > y = {{alias}}( NaN, 20.0, 0.5 )
     52     NaN
     53     > y = {{alias}}( 0.0, NaN, 0.5 )
     54     NaN
     55     > y = {{alias}}( 0.0, 20.0, NaN )
     56     NaN
     57 
     58     > y = {{alias}}( 2.0, 20, -1.0 )
     59     NaN
     60     > y = {{alias}}( 2.0, 20, 1.5 )
     61     NaN
     62 
     63 
     64 {{alias}}.factory( r, p )
     65     Returns a function for evaluating the cumulative distribution function (CDF)
     66     of a negative binomial distribution with number of successes until
     67     experiment is stopped `r` and success probability `p`.
     68 
     69     Parameters
     70     ----------
     71     r: number
     72         Number of successes until experiment is stopped.
     73 
     74     p: number
     75         Success probability.
     76 
     77     Returns
     78     -------
     79     cdf: Function
     80         Cumulative distribution function (CDF).
     81 
     82     Examples
     83     --------
     84     > var myCDF = {{alias}}.factory( 10, 0.5 );
     85     > var y = myCDF( 3.0 )
     86     ~0.046
     87     > y = myCDF( 11.0 )
     88     ~0.668
     89 
     90     See Also
     91     --------
     92