pdf.js (2223B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 25 var exp = require( '@stdlib/math/base/special/exp' ); 26 var pow = require( '@stdlib/math/base/special/pow' ); 27 var ln = require( '@stdlib/math/base/special/ln' ); 28 var PI = require( '@stdlib/constants/float64/pi' ); 29 30 31 // MAIN // 32 33 /** 34 * Evaluates the probability density function (PDF) for a lognormal distribution with location parameter `mu` and scale parameter `sigma` at a value `x`. 35 * 36 * @param {number} x - input value 37 * @param {number} mu - location parameter 38 * @param {PositiveNumber} sigma - scale parameter 39 * @returns {number} evaluated PDF 40 * 41 * @example 42 * var y = pdf( 2.0, 0.0, 1.0 ); 43 * // returns ~0.157 44 * 45 * @example 46 * var y = pdf( 1.0, 0.0, 1.0 ); 47 * // returns ~0.399 48 * 49 * @example 50 * var y = pdf( 1.0, 3.0, 1.0 ); 51 * // returns ~0.004 52 * 53 * @example 54 * var y = pdf( -1.0, 4.0, 2.0 ); 55 * // returns 0.0 56 * 57 * @example 58 * var y = pdf( NaN, 0.0, 1.0 ); 59 * // returns NaN 60 * 61 * @example 62 * var y = pdf( 0.0, NaN, 1.0 ); 63 * // returns NaN 64 * 65 * @example 66 * var y = pdf( 0.0, 0.0, NaN ); 67 * // returns NaN 68 * 69 * @example 70 * // Negative scale parameter: 71 * var y = pdf( 2.0, 0.0, -1.0 ); 72 * // returns NaN 73 */ 74 function pdf( x, mu, sigma ) { 75 var s2; 76 var A; 77 var B; 78 if ( 79 isnan( x ) || 80 isnan( mu ) || 81 isnan( sigma ) || 82 sigma <= 0.0 83 ) { 84 return NaN; 85 } 86 if ( x <= 0.0 ) { 87 return 0.0; 88 } 89 s2 = pow( sigma, 2.0 ); 90 A = 1.0 / ( sqrt( 2.0 * s2 * PI ) ); 91 B = -1.0 / ( 2.0 * s2 ); 92 return (1.0/x) * A * exp( B * pow( ln(x) - mu, 2.0 ) ); 93 } 94 95 96 // EXPORTS // 97 98 module.exports = pdf;