logpdf.js (2229B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var pow = require( '@stdlib/math/base/special/pow' ); 25 var ln = require( '@stdlib/math/base/special/ln' ); 26 var NINF = require( '@stdlib/constants/float64/ninf' ); 27 var PI = require( '@stdlib/constants/float64/pi' ); 28 29 30 // MAIN // 31 32 /** 33 * Evaluates the natural logarithm of the probability density function (PDF) for a lognormal distribution with location parameter `mu` and scale parameter `sigma` at a value `x`. 34 * 35 * @param {number} x - input value 36 * @param {number} mu - location parameter 37 * @param {PositiveNumber} sigma - scale parameter 38 * @returns {number} evaluated logPDF 39 * 40 * @example 41 * var y = logpdf( 2.0, 0.0, 1.0 ); 42 * // returns ~-1.852 43 * 44 * @example 45 * var y = logpdf( 1.0, 0.0, 1.0 ); 46 * // returns ~-0.919 47 * 48 * @example 49 * var y = logpdf( 1.0, 3.0, 1.0 ); 50 * // returns ~-5.419 51 * 52 * @example 53 * var y = logpdf( -1.0, 4.0, 2.0 ); 54 * // returns -Infinity 55 * 56 * @example 57 * var y = logpdf( NaN, 0.0, 1.0 ); 58 * // returns NaN 59 * 60 * @example 61 * var y = logpdf( 0.0, NaN, 1.0 ); 62 * // returns NaN 63 * 64 * @example 65 * var y = logpdf( 0.0, 0.0, NaN ); 66 * // returns NaN 67 * 68 * @example 69 * // Negative scale parameter: 70 * var y = logpdf( 2.0, 0.0, -1.0 ); 71 * // returns NaN 72 */ 73 function logpdf( x, mu, sigma ) { 74 var s2; 75 var A; 76 var B; 77 if ( 78 isnan( x ) || 79 isnan( mu ) || 80 isnan( sigma ) || 81 sigma <= 0.0 82 ) { 83 return NaN; 84 } 85 if ( x <= 0.0 ) { 86 return NINF; 87 } 88 s2 = pow( sigma, 2.0 ); 89 A = -0.5 * ln( 2.0 * s2 * PI ); 90 B = -1.0 / ( 2.0 * s2 ); 91 return A - ln( x ) + ( B * pow( ln(x) - mu, 2.0 ) ); 92 } 93 94 95 // EXPORTS // 96 97 module.exports = logpdf;