time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

kurtosis.js (1637B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var exp = require( '@stdlib/math/base/special/exp' );
     25 
     26 
     27 // MAIN //
     28 
     29 /**
     30 * Returns the excess kurtosis for a lognormal distribution with location `mu` and scale `sigma`.
     31 *
     32 * @param {number} mu - location parameter
     33 * @param {PositiveNumber} sigma - scale parameter
     34 * @returns {number} excess kurtosis
     35 *
     36 * @example
     37 * var y = kurtosis( 0.0, 1.0 );
     38 * // returns ~110.936
     39 *
     40 * @example
     41 * var y = kurtosis( 5.0, 2.0 );
     42 * // returns ~9220556.977
     43 *
     44 * @example
     45 * var y = kurtosis( NaN, 1.0 );
     46 * // returns NaN
     47 *
     48 * @example
     49 * var y = kurtosis( 0.0, NaN );
     50 * // returns NaN
     51 *
     52 * @example
     53 * var y = kurtosis( 0.0, 0.0 );
     54 * // returns NaN
     55 */
     56 function kurtosis( mu, sigma ) {
     57 	var out;
     58 	var s2;
     59 	if (
     60 		isnan( mu ) ||
     61 		isnan( sigma ) ||
     62 		sigma <= 0.0
     63 	) {
     64 		return NaN;
     65 	}
     66 	s2 = sigma * sigma;
     67 	out = exp( 4.0*s2 );
     68 	out += 2.0 * exp( 3.0*s2 );
     69 	out += 3.0 * exp( 2.0*s2 );
     70 	out -= 6.0;
     71 	return out;
     72 }
     73 
     74 
     75 // EXPORTS //
     76 
     77 module.exports = kurtosis;