time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1490B)


      1 
      2 {{alias}}( t, μ, s )
      3     Evaluates the moment-generating function (MGF) for a logistic distribution
      4     with location parameter `μ` and scale parameter `s` at a value `t`.
      5 
      6     If provided `NaN` as any argument, the function returns `NaN`.
      7 
      8     If provided `s < 0`, the function returns `NaN`.
      9 
     10     Parameters
     11     ----------
     12     t: number
     13         Input value.
     14 
     15     μ: number
     16         Location parameter.
     17 
     18     s: number
     19         Scale parameter.
     20 
     21     Returns
     22     -------
     23     out: number
     24         Evaluated MGF.
     25 
     26     Examples
     27     --------
     28     > var y = {{alias}}( 0.9, 0.0, 1.0 )
     29     ~9.15
     30     > y = {{alias}}( 0.1, 4.0, 4.0 )
     31     ~1.971
     32     > y = {{alias}}( -0.2, 4.0, 4.0 )
     33     ~1.921
     34     > y = {{alias}}( 0.5, 0.0, -1.0 )
     35     NaN
     36     > y = {{alias}}( 0.5, 0.0, 4.0 )
     37     Infinity
     38     > y = {{alias}}( NaN, 0.0, 1.0 )
     39     NaN
     40     > y = {{alias}}( 0.0, NaN, 1.0 )
     41     NaN
     42     > y = {{alias}}( 0.0, 0.0, NaN )
     43     NaN
     44 
     45 
     46 {{alias}}.factory( μ, s )
     47     Returns a function for evaluating the moment-generating function (MGF)
     48     of a Logistic distribution with location parameter `μ` and scale parameter
     49     `s`.
     50 
     51     Parameters
     52     ----------
     53     μ: number
     54         Location parameter.
     55 
     56     s: number
     57         Scale parameter.
     58 
     59     Returns
     60     -------
     61     mgf: Function
     62         Moment-generating function (MGF).
     63 
     64     Examples
     65     --------
     66     > var mymgf = {{alias}}.factory( 10.0, 0.5 );
     67     > var y = mymgf( 0.5 )
     68     ~164.846
     69     > y = mymgf( 2.0 )
     70     Infinity
     71 
     72     See Also
     73     --------
     74