time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (3698B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Probability Density Function
     22 
     23 > [Lévy][levy-distribution] distribution [probability density function (PDF)][pdf].
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [Lévy][levy-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:levy_pdf" align="center" raw="f(x;\mu,c)=\begin{cases} \sqrt{\frac{c}{2\pi}}~~\frac{e^{ -\frac{c}{2(x-\mu)}}} {(x-\mu)^{3/2}} & \text{ for } x > \mu \\ 0 & \text{ otherwise} \end{cases}" alt="Probability density function (PDF) for a Lévy distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\mu,c)=\begin{cases} \sqrt{\frac{c}{2\pi}}~~\frac{e^{ -\frac{c}{2(x-\mu)}}} {(x-\mu)^{3/2}} &amp; \text{ for } x &gt; \mu \\ 0 &amp; \text{ otherwise} \end{cases}" data-equation="eq:levy_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/levy/pdf/docs/img/equation_levy_pdf.svg" alt="Probability density function (PDF) for a Lévy distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `μ` is the location parameter and `c > 0` is the scale parameter.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var pdf = require( '@stdlib/stats/base/dists/levy/pdf' );
     50 ```
     51 
     52 #### pdf( x, mu, c )
     53 
     54 Evaluates the [probability density function][pdf] (PDF) for a [Lévy][levy-distribution] distribution with parameters `mu` (location parameter) and `c` (scale parameter).
     55 
     56 ```javascript
     57 var y = pdf( 2.0, 0.0, 1.0 );
     58 // returns ~0.11
     59 
     60 y = pdf( -1.0, 4.0, 4.0 );
     61 // returns 0.0
     62 ```
     63 
     64 If provided `NaN` as any argument, the function returns `NaN`.
     65 
     66 ```javascript
     67 var y = pdf( NaN, 0.0, 1.0 );
     68 // returns NaN
     69 
     70 y = pdf( 0.0, NaN, 1.0 );
     71 // returns NaN
     72 
     73 y = pdf( 0.0, 0.0, NaN );
     74 // returns NaN
     75 ```
     76 
     77 If provided `c <= 0`, the function returns `NaN`.
     78 
     79 ```javascript
     80 var y = pdf( 2.0, 0.0, -1.0 );
     81 // returns NaN
     82 
     83 y = pdf( 2.0, 0.0, 0.0 );
     84 // returns NaN
     85 ```
     86 
     87 #### pdf.factory( mu, c )
     88 
     89 Returns a function for evaluating the [probability density function][pdf] (PDF) of a [Lévy][levy-distribution] distribution with parameters `mu` (location parameter) and `c` (scale parameter).
     90 
     91 ```javascript
     92 var mypdf = pdf.factory( 10.0, 2.0 );
     93 
     94 var y = mypdf( 11.0 );
     95 // returns ~0.208
     96 
     97 y = mypdf( 20.0 );
     98 // returns ~0.016
     99 ```
    100 
    101 </section>
    102 
    103 <!-- /.usage -->
    104 
    105 <section class="examples">
    106 
    107 ## Examples
    108 
    109 <!-- eslint no-undef: "error" -->
    110 
    111 ```javascript
    112 var randu = require( '@stdlib/random/base/randu' );
    113 var EPS = require( '@stdlib/constants/float64/eps' );
    114 var pdf = require( '@stdlib/stats/base/dists/levy/pdf' );
    115 
    116 var mu;
    117 var c;
    118 var x;
    119 var y;
    120 var i;
    121 
    122 for ( i = 0; i < 10; i++ ) {
    123     mu = randu() * 10.0;
    124     x = ( randu()*10.0 ) + mu;
    125     c = ( randu()*10.0 ) + EPS;
    126     y = pdf( x, mu, c );
    127     console.log( 'x: %d, µ: %d, c: %d, f(x;µ,c): %d', x, mu, c, y );
    128 }
    129 ```
    130 
    131 </section>
    132 
    133 <!-- /.examples -->
    134 
    135 <section class="links">
    136 
    137 [levy-distribution]: https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
    138 
    139 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    140 
    141 </section>
    142 
    143 <!-- /.links -->