time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (2004B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     25 var ln = require( '@stdlib/math/base/special/ln' );
     26 var LN_TWO_PI = require( '@stdlib/constants/float64/ln-two-pi' );
     27 var NINF = require( '@stdlib/constants/float64/ninf' );
     28 
     29 
     30 // MAIN //
     31 
     32 /**
     33 * Returns a function for evaluating the natural logarithm of the probability density function (PDF) for a Lévy distribution.
     34 *
     35 * @param {number} mu - location parameter
     36 * @param {PositiveNumber} c - scale parameter
     37 * @returns {Function} logPDF
     38 *
     39 * @example
     40 * var logpdf = factory( 10.0, 2.0 );
     41 * var y = logpdf( 11.0 );
     42 * // returns ~-1.572
     43 *
     44 * y = logpdf( 10.0 );
     45 * // returns -Infinity
     46 */
     47 function factory( mu, c ) {
     48 	if (
     49 		isnan( mu ) ||
     50 		isnan( c ) ||
     51 		c <= 0.0
     52 	) {
     53 		return constantFunction( NaN );
     54 	}
     55 	return logpdf;
     56 
     57 	/**
     58 	* Evaluates the natural logarithm of the probability density function (PDF) for a Lévy distribution.
     59 	*
     60 	* @private
     61 	* @param {number} x - input value
     62 	* @returns {number} evaluated logPDF
     63 	*
     64 	* @example
     65 	* var y = logpdf( -1.2 );
     66 	* // returns <number>
     67 	*/
     68 	function logpdf( x ) {
     69 		var z;
     70 		if ( isnan( x ) ) {
     71 			return NaN;
     72 		}
     73 		if ( x <= mu ) {
     74 			return NINF;
     75 		}
     76 		z = x - mu;
     77 		return 0.5 * ( ln( c ) - LN_TWO_PI - ( c/z ) - ( 3.0*ln( z ) ) );
     78 	}
     79 }
     80 
     81 
     82 // EXPORTS //
     83 
     84 module.exports = factory;