time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (4104B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Logarithm of Probability Density Function
     22 
     23 > [Lévy][levy-distribution] distribution logarithm of [probability density function (PDF)][pdf].
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [Lévy][levy-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:levy_pdf" align="center" raw="f(x;\mu,c)=\begin{cases} \sqrt{\frac{c}{2\pi}}~~\frac{e^{ -\frac{c}{2(x-\mu)}}} {(x-\mu)^{3/2}} & \text{ for } x > \mu \\ 0 & \text{ otherwise} \end{cases}" alt="Probability density function (PDF) for a Lévy distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\mu,c)=\begin{cases} \sqrt{\frac{c}{2\pi}}~~\frac{e^{ -\frac{c}{2(x-\mu)}}} {(x-\mu)^{3/2}} &amp; \text{ for } x &gt; \mu \\ 0 &amp; \text{ otherwise} \end{cases}" data-equation="eq:levy_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/levy/logpdf/docs/img/equation_levy_pdf.svg" alt="Probability density function (PDF) for a Lévy distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `μ` is the location parameter and `c > 0` is the scale parameter.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var logpdf = require( '@stdlib/stats/base/dists/levy/logpdf' );
     50 ```
     51 
     52 #### logpdf( x, mu, c )
     53 
     54 Evaluates the logarithm of the [probability density function][pdf] (PDF) for a [Lévy][levy-distribution] distribution with parameters `mu` (location parameter) and `c` (scale parameter).
     55 
     56 ```javascript
     57 var y = logpdf( 2.0, 0.0, 1.0 );
     58 // returns ~-2.209
     59 
     60 y = logpdf( -1.0, 4.0, 4.0 );
     61 // returns -Infinity
     62 ```
     63 
     64 If provided `NaN` as any argument, the function returns `NaN`.
     65 
     66 ```javascript
     67 var y = logpdf( NaN, 0.0, 1.0 );
     68 // returns NaN
     69 
     70 y = logpdf( 0.0, NaN, 1.0 );
     71 // returns NaN
     72 
     73 y = logpdf( 0.0, 0.0, NaN );
     74 // returns NaN
     75 ```
     76 
     77 If provided `c <= 0`, the function returns `NaN`.
     78 
     79 ```javascript
     80 var y = logpdf( 2.0, 0.0, -1.0 );
     81 // returns NaN
     82 
     83 y = logpdf( 2.0, 0.0, 0.0 );
     84 // returns NaN
     85 ```
     86 
     87 #### logpdf.factory( mu, c )
     88 
     89 Returns a function for evaluating the logarithm of the [probability density function][pdf] (PDF) of a [Lévy][levy-distribution] distribution with parameters `mu` (location parameter) and `c` (scale parameter).
     90 
     91 ```javascript
     92 var mylogpdf = logpdf.factory( 10.0, 2.0 );
     93 
     94 var y = mylogpdf( 11.0 );
     95 // returns ~-1.572
     96 
     97 y = mylogpdf( 20.0 );
     98 // returns ~-4.126
     99 ```
    100 
    101 </section>
    102 
    103 <!-- /.usage -->
    104 
    105 <section class="notes">
    106 
    107 ## Notes
    108 
    109 -   In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow.
    110 
    111 </section>
    112 
    113 <!-- /.notes -->
    114 
    115 <section class="examples">
    116 
    117 ## Examples
    118 
    119 <!-- eslint no-undef: "error" -->
    120 
    121 ```javascript
    122 var randu = require( '@stdlib/random/base/randu' );
    123 var EPS = require( '@stdlib/constants/float64/eps' );
    124 var logpdf = require( '@stdlib/stats/base/dists/levy/logpdf' );
    125 
    126 var mu;
    127 var c;
    128 var x;
    129 var y;
    130 var i;
    131 
    132 for ( i = 0; i < 10; i++ ) {
    133     mu = randu() * 10.0;
    134     x = ( randu()*10.0 ) + mu;
    135     c = ( randu()*10.0 ) + EPS;
    136     y = logpdf( x, mu, c );
    137     console.log( 'x: %d, µ: %d, c: %d, ln(f(x;µ,c)): %d', x, mu, c, y );
    138 }
    139 ```
    140 
    141 </section>
    142 
    143 <!-- /.examples -->
    144 
    145 <section class="links">
    146 
    147 [levy-distribution]: https://en.wikipedia.org/wiki/L%C3%A9vy_distribution
    148 
    149 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    150 
    151 </section>
    152 
    153 <!-- /.links -->