time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1471B)


      1 
      2 {{alias}}( x, μ, c )
      3     Evaluates the cumulative distribution function (CDF) for a Lévy distribution
      4     with location parameter `μ` and scale parameter `c` at a value `x`.
      5 
      6     If provided `NaN` as any argument, the function returns `NaN`.
      7 
      8     If provided `c <= 0`, the function returns `NaN`.
      9 
     10     Parameters
     11     ----------
     12     x: number
     13         Input value.
     14 
     15     μ: number
     16         Location parameter.
     17 
     18     c: number
     19         Scale parameter.
     20 
     21     Returns
     22     -------
     23     out: number
     24         Evaluated CDF.
     25 
     26     Examples
     27     --------
     28     > var y = {{alias}}( 2.0, 0.0, 1.0 )
     29     ~0.48
     30     > y = {{alias}}( 12.0, 10.0, 3.0 )
     31     ~0.221
     32     > y = {{alias}}( 9.0, 10.0, 3.0 )
     33     0.0
     34     > y = {{alias}}( NaN, 0.0, 1.0 )
     35     NaN
     36     > y = {{alias}}( 2, NaN, 1.0 )
     37     NaN
     38     > y = {{alias}}( 2.0, 0.0, NaN )
     39     NaN
     40     // Negative scale parameter:
     41     > y = {{alias}}( 2.0, 0.0, -1.0 )
     42     NaN
     43 
     44 
     45 {{alias}}.factory( μ, c )
     46     Returns a function for evaluating the cumulative distribution function (CDF)
     47     of a Lévy distribution with location parameter `μ` and scale parameter `c`.
     48 
     49     Parameters
     50     ----------
     51     μ: number
     52         Location parameter.
     53 
     54     c: number
     55         Scale parameter.
     56 
     57     Returns
     58     -------
     59     cdf: Function
     60         Cumulative distribution function (CDF).
     61 
     62     Examples
     63     --------
     64     > var myCDF = {{alias}}.factory( 2.0, 3.0 );
     65     > var y = myCDF( 10.0 )
     66     ~0.54
     67     > y = myCDF( 2.0 )
     68     0.0
     69 
     70     See Also
     71     --------
     72