time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1884B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     25 var abs = require( '@stdlib/math/base/special/abs' );
     26 var exp = require( '@stdlib/math/base/special/exp' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the probability density function (PDF) for a Laplace distribution with location parameter `mu` and scale parameter `b`.
     33 *
     34 * @param {number} mu - location parameter
     35 * @param {PositiveNumber} b - scale parameter
     36 * @returns {Function} PDF
     37 *
     38 * @example
     39 * var pdf = factory( 10.0, 2.0 );
     40 *
     41 * var y = pdf( 10.0 );
     42 * // returns 0.25
     43 *
     44 * y = pdf( 5.0 );
     45 * // returns ~0.021
     46 *
     47 * y = pdf( 12.0 );
     48 * // returns ~0.092
     49 */
     50 function factory( mu, b ) {
     51 	if (
     52 		isnan( mu ) ||
     53 		isnan( b ) ||
     54 		b <= 0.0
     55 	) {
     56 		return constantFunction( NaN );
     57 	}
     58 	return pdf;
     59 
     60 	/**
     61 	* Evaluates the probability density function (PDF) for a Laplace distribution.
     62 	*
     63 	* @private
     64 	* @param {number} x - input value
     65 	* @returns {number} evaluated PDF
     66 	*
     67 	* var y = pdf( -3.14 );
     68 	* // returns <number>
     69 	*/
     70 	function pdf( x ) {
     71 		var z;
     72 		if ( isnan( x ) ) {
     73 			return NaN;
     74 		}
     75 		z = ( x - mu ) / b;
     76 		return 0.5 * exp( -abs( z ) ) / b;
     77 	}
     78 }
     79 
     80 
     81 // EXPORTS //
     82 
     83 module.exports = factory;