time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (2172B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     25 var pow = require( '@stdlib/math/base/special/pow' );
     26 var ln = require( '@stdlib/math/base/special/ln' );
     27 var NINF = require( '@stdlib/constants/float64/ninf' );
     28 
     29 
     30 // MAIN //
     31 
     32 /**
     33 * Returns a function for evaluating the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution with first shape parameter `a` and second shape parameter `b`.
     34 *
     35 * @param {PositiveNumber} a - first shape parameter
     36 * @param {PositiveNumber} b - second shape parameter
     37 * @returns {Function} logPDF
     38 *
     39 * @example
     40 * var logpdf = factory( 0.5, 0.5 );
     41 *
     42 * var y = logpdf( 0.8 );
     43 * // returns ~-0.151
     44 *
     45 * y = logpdf( 0.3 );
     46 * // returns ~-0.388
     47 */
     48 function factory( a, b ) {
     49 	if (
     50 		isnan( a ) ||
     51 		isnan( b ) ||
     52 		a <= 0.0 ||
     53 		b <= 0.0
     54 	) {
     55 		return constantFunction( NaN );
     56 	}
     57 	return logpdf;
     58 
     59 	/**
     60 	* Evaluates the natural logarithm of the probability density function (PDF) for a Kumaraswamy's double bounded distribution.
     61 	*
     62 	* @private
     63 	* @param {number} x - input value
     64 	* @returns {number} evaluated logPDF
     65 	*
     66 	* @example
     67 	* var y = logpdf( 2.0 );
     68 	* // returns <number>
     69 	*/
     70 	function logpdf( x ) {
     71 		var out;
     72 
     73 		if ( isnan( x ) ) {
     74 			return NaN;
     75 		}
     76 		if ( x <= 0.0 || x >= 1.0 ) {
     77 			return NINF;
     78 		}
     79 		out = ln( a*b );
     80 		out += ( a - 1.0 ) * ln( x );
     81 		out += ( b - 1.0 ) * ln( 1.0 - pow( x, a ) );
     82 		return out;
     83 	}
     84 }
     85 
     86 
     87 // EXPORTS //
     88 
     89 module.exports = factory;