kurtosis.js (1975B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var beta = require( '@stdlib/math/base/special/beta' ); 25 26 27 // MAIN // 28 29 /** 30 * Returns the excess kurtosis of a Kumaraswamy's double bounded distribution. 31 * 32 * @param {PositiveNumber} a - first shape parameter 33 * @param {PositiveNumber} b - second shape parameter 34 * @returns {number} excess kurtosis 35 * 36 * @example 37 * var v = kurtosis( 0.5, 1.0 ); 38 * // returns ~2.143 39 * 40 * @example 41 * var v = kurtosis( 4.0, 12.0 ); 42 * // returns ~2.704 43 * 44 * @example 45 * var v = kurtosis( 12.0, 2.0 ); 46 * // returns ~4.817 47 * 48 * @example 49 * var v = kurtosis( 1.0, -0.1 ); 50 * // returns NaN 51 * 52 * @example 53 * var v = kurtosis( -0.1, 1.0 ); 54 * // returns NaN 55 * 56 * @example 57 * var v = kurtosis( 2.0, NaN ); 58 * // returns NaN 59 * 60 * @example 61 * var v = kurtosis( NaN, 2.0 ); 62 * // returns NaN 63 */ 64 function kurtosis( a, b ) { 65 var sigma2; 66 var out; 67 var mu2; 68 var m1; 69 var m2; 70 var m3; 71 var m4; 72 if ( 73 isnan( a ) || 74 a <= 0.0 || 75 isnan( b ) || 76 b <= 0.0 77 ) { 78 return NaN; 79 } 80 m1 = b * beta( 1.0 + ( 1.0/a ), b ); 81 m2 = b * beta( 1.0 + ( 2.0/a ), b ); 82 m3 = b * beta( 1.0 + ( 3.0/a ), b ); 83 m4 = b * beta( 1.0 + ( 4.0/a ), b ); 84 sigma2 = m2 - ( m1*m1 ); 85 mu2 = m1 * m1; 86 out = ( m4 - ( 4.0*m3*m1 ) + ( 6.0*m2*mu2 ) - ( 3.0*mu2*mu2 ) ); 87 out /= sigma2*sigma2; 88 return out; 89 } 90 91 92 // EXPORTS // 93 94 module.exports = kurtosis;