pdf.js (2142B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var gammaln = require( '@stdlib/math/base/special/gammaln' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var exp = require( '@stdlib/math/base/special/exp' ); 26 var ln = require( '@stdlib/math/base/special/ln' ); 27 28 29 // MAIN // 30 31 /** 32 * Evaluates the probability density function (PDF) for an inverse gamma distribution with shape parameter `alpha` and scale parameter `beta` at a value `x`. 33 * 34 * @param {number} x - input value 35 * @param {PositiveNumber} alpha - shape parameter 36 * @param {PositiveNumber} beta - scale parameter 37 * @returns {number} evaluated PDF 38 * 39 * @example 40 * var y = pdf( 2.0, 0.5, 1.0 ); 41 * // returns ~0.121 42 * 43 * @example 44 * var y = pdf( 0.2, 1.0, 1.0 ); 45 * // returns ~0.168 46 * 47 * @example 48 * var y = pdf( -1.0, 4.0, 2.0 ); 49 * // returns 0.0 50 * 51 * @example 52 * var y = pdf( NaN, 1.0, 1.0 ); 53 * // returns NaN 54 * 55 * @example 56 * var y = pdf( 0.0, NaN, 1.0 ); 57 * // returns NaN 58 * 59 * @example 60 * var y = pdf( 0.0, 1.0, NaN ); 61 * // returns NaN 62 * 63 * @example 64 * // Negative shape parameter: 65 * var y = pdf( 2.0, -1.0, 1.0 ); 66 * // returns NaN 67 * 68 * @example 69 * // Negative scale parameter: 70 * var y = pdf( 2.0, 1.0, -1.0 ); 71 * // returns NaN 72 */ 73 function pdf( x, alpha, beta ) { 74 var lnl; 75 if ( 76 isnan( x ) || 77 isnan( alpha ) || 78 isnan( beta ) || 79 alpha <= 0.0 || 80 beta <= 0.0 81 ) { 82 return NaN; 83 } 84 if ( x <= 0.0 ) { 85 return 0.0; 86 } 87 lnl = (alpha * ln( beta )) - gammaln( alpha ); 88 lnl -= (alpha + 1.0) * ln( x ); 89 lnl -= beta / x; 90 return exp( lnl ); 91 } 92 93 94 // EXPORTS // 95 96 module.exports = pdf;