README.md (4051B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Probability Density Function 22 23 > Evaluate the natural logarithm of the probability density function (PDF) for an [inverse gamma][inverse-gamma] distribution. 24 25 <section class="intro"> 26 27 The [probability density function][pdf] (PDF) for an [inverse gamma][inverse-gamma] random variable is 28 29 <!-- <equation class="equation" label="eq:invgamma_pdf" align="center" raw="{\displaystyle f(x;\alpha ,\beta )={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}x^{-\alpha -1}\exp \left(-{\frac {\beta }{x}}\right)}" alt="Probability density function (PDF) for an inverse gamma distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="{\displaystyle f(x;\alpha ,\beta )={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}x^{-\alpha -1}\exp \left(-{\frac {\beta }{x}}\right)}" data-equation="eq:invgamma_pdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/stats/base/dists/invgamma/logpdf/docs/img/equation_invgamma_pdf.svg" alt="Probability density function (PDF) for an inverse gamma distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `alpha > 0` is the shape parameter and `beta > 0` is the scale parameter. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logpdf = require( '@stdlib/stats/base/dists/invgamma/logpdf' ); 50 ``` 51 52 #### logpdf( x, alpha, beta ) 53 54 Evaluates the natural logarithm of the [probability density function][pdf] (PDF) for an [inverse gamma][inverse-gamma] distribution with parameters `alpha` (shape parameter) and `beta` (rate parameter). 55 56 ```javascript 57 var y = logpdf( 2.0, 0.5, 1.0 ); 58 // returns ~-2.112 59 60 y = logpdf( 0.2, 1.0, 1.0 ); 61 // returns ~-1.781 62 63 y = logpdf( -1.0, 4.0, 2.0 ); 64 // returns -Infinity 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = logpdf( NaN, 1.0, 1.0 ); 71 // returns NaN 72 73 y = logpdf( 0.0, NaN, 1.0 ); 74 // returns NaN 75 76 y = logpdf( 0.0, 1.0, NaN ); 77 // returns NaN 78 ``` 79 80 If provided `alpha <= 0`, the function returns `NaN`. 81 82 ```javascript 83 var y = logpdf( 2.0, 0.0, 1.0 ); 84 // returns NaN 85 86 y = logpdf( 2.0, -0.5, 1.0 ); 87 // returns NaN 88 ``` 89 90 If provided `beta <= 0`, the function returns `NaN`. 91 92 ```javascript 93 var y = logpdf( 2.0, 1.0, 0.0 ); 94 // returns NaN 95 96 y = logpdf( 2.0, 1.0, -1.0 ); 97 // returns NaN 98 ``` 99 100 #### logpdf.factory( alpha, beta ) 101 102 Returns a `function` for evaluating the natural logarithm of the [PDF][pdf] for an [inverse gamma][inverse-gamma] distribution with parameters `alpha` (shape parameter) and `beta` (rate parameter). 103 104 ```javascript 105 var mylogPDF = logpdf.factory( 6.0, 7.0 ); 106 107 var y = mylogPDF( 2.0 ); 108 // returns ~-1.464 109 ``` 110 111 </section> 112 113 <!-- /.usage --> 114 115 <section class="examples"> 116 117 ## Examples 118 119 <!-- eslint no-undef: "error" --> 120 121 ```javascript 122 var randu = require( '@stdlib/random/base/randu' ); 123 var logpdf = require( '@stdlib/stats/base/dists/invgamma/logpdf' ); 124 125 var alpha; 126 var beta; 127 var x; 128 var y; 129 var i; 130 131 for ( i = 0; i < 10; i++ ) { 132 x = randu() * 2.0; 133 alpha = randu() * 5.0; 134 beta = randu() * 5.0; 135 y = logpdf( x, alpha, beta ); 136 console.log( 'x: %d, α: %d, β: %d, ln(f(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) ); 137 } 138 ``` 139 140 </section> 141 142 <!-- /.examples --> 143 144 <section class="links"> 145 146 [inverse-gamma]: https://en.wikipedia.org/wiki/Inverse-gamma_distribution 147 148 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function 149 150 </section> 151 152 <!-- /.links -->