skewness.js (2075B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); 24 var sqrt = require( '@stdlib/math/base/special/sqrt' ); 25 var PINF = require( '@stdlib/constants/float64/pinf' ); 26 27 28 // MAIN // 29 30 /** 31 * Returns the skewness of a hypergeometric distribution. 32 * 33 * @param {NonNegativeInteger} N - population size 34 * @param {NonNegativeInteger} K - subpopulation size 35 * @param {NonNegativeInteger} n - number of draws 36 * @returns {number} skewness 37 * 38 * @example 39 * var v = skewness( 16, 11, 4 ); 40 * // returns ~-0.258 41 * 42 * @example 43 * var v = skewness( 4, 2, 2 ); 44 * // returns 0.0 45 * 46 * @example 47 * var v = skewness( 10, 5, 12 ); 48 * // returns NaN 49 * 50 * @example 51 * var v = skewness( 10.3, 10, 4 ); 52 * // returns NaN 53 * 54 * @example 55 * var v = skewness( 10, 5.5, 4 ); 56 * // returns NaN 57 * 58 * @example 59 * var v = skewness( 10, 5, 4.5 ); 60 * // returns NaN 61 * 62 * @example 63 * var v = skewness( NaN, 10, 4 ); 64 * // returns NaN 65 * 66 * @example 67 * var v = skewness( 20, NaN, 4 ); 68 * // returns NaN 69 * 70 * @example 71 * var v = skewness( 20, 10, NaN ); 72 * // returns NaN 73 */ 74 function skewness( N, K, n ) { 75 var p; 76 var q; 77 if ( 78 !isNonNegativeInteger( N ) || 79 !isNonNegativeInteger( K ) || 80 !isNonNegativeInteger( n ) || 81 N === PINF || 82 K === PINF || 83 K > N || 84 n > N 85 ) { 86 return NaN; 87 } 88 p = ( N - (2*K) ) * sqrt( N - 1 ) * ( N - (2*n) ); 89 q = sqrt( n * K * ( N-K ) * ( N-n ) ) * ( N - 2 ); 90 return p / q; 91 } 92 93 94 // EXPORTS // 95 96 module.exports = skewness;