logpmf.js (3050B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var fln = require( '@stdlib/math/base/special/factorialln' ); 26 var max = require( '@stdlib/math/base/special/max' ); 27 var min = require( '@stdlib/math/base/special/min' ); 28 var NINF = require( '@stdlib/constants/float64/ninf' ); 29 var PINF = require( '@stdlib/constants/float64/pinf' ); 30 31 32 // MAIN // 33 34 /** 35 * Evaluates the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution with population size `N`, subpopulation size `K` and number of draws `n`. 36 * 37 * @param {number} x - input value 38 * @param {NonNegativeInteger} N - population size 39 * @param {NonNegativeInteger} K - subpopulation size 40 * @param {NonNegativeInteger} n - number of draws 41 * @returns {number} evaluated logPMF 42 * 43 * @example 44 * var y = logpmf( 1.0, 8, 4, 2 ); 45 * // returns ~-0.56 46 * 47 * @example 48 * var y = logpmf( 2.0, 8, 4, 2 ); 49 * // returns ~-1.54 50 * 51 * @example 52 * var y = logpmf( 0.0, 8, 4, 2 ); 53 * // returns ~-1.54 54 * 55 * @example 56 * var y = logpmf( 1.5, 8, 4, 2 ); 57 * // returns -Infinity 58 * 59 * @example 60 * var y = logpmf( NaN, 10, 5, 2 ); 61 * // returns NaN 62 * 63 * @example 64 * var y = logpmf( 0.0, NaN, 5, 2 ); 65 * // returns NaN 66 * 67 * @example 68 * var y = logpmf( 0.0, 10, NaN, 2 ); 69 * // returns NaN 70 * 71 * @example 72 * var y = logpmf( 0.0, 10, 5, NaN ); 73 * // returns NaN 74 * 75 * @example 76 * var y = logpmf( 2.0, 10.5, 5, 2 ); 77 * // returns NaN 78 * 79 * @example 80 * var y = logpmf( 2.0, 5, 1.5, 2 ); 81 * // returns NaN 82 * 83 * @example 84 * var y = logpmf( 2.0, 10, 5, -2.0 ); 85 * // returns NaN 86 * 87 * @example 88 * var y = logpmf( 2.0, 10, 5, 12 ); 89 * // returns NaN 90 * 91 * @example 92 * var y = logpmf( 2.0, 8, 3, 9 ); 93 * // returns NaN 94 */ 95 function logpmf( x, N, K, n ) { 96 var ldenom; 97 var lnum; 98 var maxs; 99 var mins; 100 101 if ( 102 isnan( x ) || 103 isnan( N ) || 104 isnan( K ) || 105 isnan( n ) || 106 !isNonNegativeInteger( N ) || 107 !isNonNegativeInteger( K ) || 108 !isNonNegativeInteger( n ) || 109 N === PINF || 110 K === PINF || 111 K > N || 112 n > N 113 ) { 114 return NaN; 115 } 116 mins = max( 0, n + K - N ); 117 maxs = min( K, n ); 118 if ( 119 isNonNegativeInteger( x ) && 120 mins <= x && 121 x <= maxs 122 ) { 123 lnum = fln( n ) + fln( K ) + fln( N - n ) + fln( N - K ); 124 ldenom = fln( N ) + fln( x ) + fln( n - x ); 125 ldenom += fln( K - x ) + fln( N - K + x - n ); 126 return lnum - ldenom; 127 } 128 return NINF; 129 } 130 131 132 // EXPORTS // 133 134 module.exports = logpmf;