cdf.js (3247B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); 24 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 25 var trunc = require( '@stdlib/math/base/special/trunc' ); 26 var max = require( '@stdlib/math/base/special/max' ); 27 var min = require( '@stdlib/math/base/special/min' ); 28 var pmf = require( './../../../../../base/dists/hypergeometric/pmf' ); 29 var PINF = require( '@stdlib/constants/float64/pinf' ); 30 var Float64Array = require( '@stdlib/array/float64' ); 31 var sum = require( './sum.js' ); 32 33 34 // MAIN // 35 36 /** 37 * Evaluates the cumulative distribution function (CDF) for a hypergeometric distribution with population size `N`, subpopulation size `K`, and number of draws `n` at a value `x`. 38 * 39 * @param {number} x - input value 40 * @param {NonNegativeInteger} N - population size 41 * @param {NonNegativeInteger} K - subpopulation size 42 * @param {NonNegativeInteger} n - number of draws 43 * @returns {Probability} evaluated CDF 44 * 45 * @example 46 * var y = cdf( 1.0, 8, 4, 2 ); 47 * // returns ~0.786 48 * 49 * @example 50 * var y = cdf( 1.5, 8, 4, 2 ); 51 * // returns ~0.786 52 * 53 * @example 54 * var y = cdf( 2.0, 8, 4, 2 ); 55 * // returns 1.0 56 * 57 * @example 58 * var y = cdf( 0, 8, 4, 2 ); 59 * // returns ~0.214 60 * 61 * @example 62 * var y = cdf( NaN, 10, 5, 2 ); 63 * // returns NaN 64 * 65 * @example 66 * var y = cdf( 0.0, NaN, 5, 2 ); 67 * // returns NaN 68 * 69 * @example 70 * var y = cdf( 0.0, 10, NaN, 2 ); 71 * // returns NaN 72 * 73 * @example 74 * var y = cdf( 0.0, 10, 5, NaN ); 75 * // returns NaN 76 * 77 * @example 78 * var y = cdf( 2.0, 10.5, 5, 2 ); 79 * // returns NaN 80 * 81 * @example 82 * var y = cdf( 2.0, 10, 1.5, 2 ); 83 * // returns NaN 84 * 85 * @example 86 * var y = cdf( 2.0, 10, 5, -2.0 ); 87 * // returns NaN 88 * 89 * @example 90 * var y = cdf( 2.0, 10, 5, 12 ); 91 * // returns NaN 92 * 93 * @example 94 * var y = cdf( 2.0, 8, 3, 9 ); 95 * // returns NaN 96 */ 97 function cdf( x, N, K, n ) { 98 var denom; 99 var probs; 100 var num; 101 var ret; 102 var i; 103 104 if ( 105 isnan( x ) || 106 isnan( N ) || 107 isnan( K ) || 108 isnan( n ) || 109 !isNonNegativeInteger( N ) || 110 !isNonNegativeInteger( K ) || 111 !isNonNegativeInteger( n ) || 112 N === PINF || 113 K === PINF || 114 K > N || 115 n > N 116 ) { 117 return NaN; 118 } 119 x = trunc( x ); 120 if ( x < max( 0, n+K-N ) ) { 121 return 0.0; 122 } 123 if ( x >= min( n, K ) ) { 124 return 1.0; 125 } 126 127 probs = new Float64Array( x+1 ); 128 probs[ x ] = pmf( x, N, K, n ); 129 130 /* 131 * Use recurrence relation: 132 * 133 * (x+1)( N - K - (n-x-1))P(X=x+1)=(K-x)(n-x)P(X=x) 134 */ 135 for ( i = x-1; i >= 0; i-- ) { 136 num = ( i+1 ) * ( N-K-(n-i-1) ); 137 denom = ( K-i ) * ( n-i ); 138 probs[ i ] = ( num/denom ) * probs[ i+1 ]; 139 } 140 ret = sum( probs ); 141 return min( ret, 1.0 ); 142 } 143 144 145 // EXPORTS // 146 147 module.exports = cdf;