time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1480B)


      1 
      2 {{alias}}( x, μ, β )
      3     Evaluates the probability density function (PDF) for a Gumbel distribution
      4     with location parameter `μ` and scale parameter `β` at a value `x`.
      5 
      6     If provided `NaN` as any argument, the function returns `NaN`.
      7 
      8     If provided `β <= 0`, the function returns `NaN`.
      9 
     10     Parameters
     11     ----------
     12     x: number
     13         Input value.
     14 
     15     μ: number
     16         Location parameter.
     17 
     18     β: number
     19         Scale parameter.
     20 
     21     Returns
     22     -------
     23     out: number
     24         Evaluated PDF.
     25 
     26     Examples
     27     --------
     28     > var y = {{alias}}( 0.0, 0.0, 2.0 )
     29     ~0.184
     30     > y = {{alias}}( 0.0, 0.0, 1.0 )
     31     ~0.368
     32     > y = {{alias}}( 1.0, 3.0, 2.0 )
     33     ~0.09
     34     > y = {{alias}}( NaN, 0.0, 1.0 )
     35     NaN
     36     > y = {{alias}}( 0.0, NaN, 1.0 )
     37     NaN
     38     > y = {{alias}}( 0.0, 0.0, NaN )
     39     NaN
     40     // Negative scale parameter:
     41     > y = {{alias}}( 2.0, 0.0, -1.0 )
     42     NaN
     43 
     44 
     45 {{alias}}.factory( μ, β )
     46     Returns a function for evaluating the probability density function (PDF)
     47     of a Gumbel distribution with location parameter `μ` and scale parameter
     48     `β`.
     49 
     50     Parameters
     51     ----------
     52     μ: number
     53         Location parameter.
     54 
     55     β: number
     56         Scale parameter.
     57 
     58     Returns
     59     -------
     60     pdf: Function
     61         Probability density function (PDF).
     62 
     63     Examples
     64     --------
     65     > var myPDF = {{alias}}.factory( 10.0, 2.0 );
     66     > var y = myPDF( 10.0 )
     67     ~0.184
     68     > y = myPDF( 12.0 )
     69     ~0.127
     70 
     71     See Also
     72     --------
     73