time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

README.md (3488B)


      1 <!--
      2 
      3 @license Apache-2.0
      4 
      5 Copyright (c) 2018 The Stdlib Authors.
      6 
      7 Licensed under the Apache License, Version 2.0 (the "License");
      8 you may not use this file except in compliance with the License.
      9 You may obtain a copy of the License at
     10 
     11    http://www.apache.org/licenses/LICENSE-2.0
     12 
     13 Unless required by applicable law or agreed to in writing, software
     14 distributed under the License is distributed on an "AS IS" BASIS,
     15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16 See the License for the specific language governing permissions and
     17 limitations under the License.
     18 
     19 -->
     20 
     21 # Probability Density Function
     22 
     23 > [Gumbel][gumbel-distribution] distribution [probability density function (PDF)][pdf].
     24 
     25 <section class="intro">
     26 
     27 The [probability density function][pdf] (PDF) for a [Gumbel][gumbel-distribution] random variable is
     28 
     29 <!-- <equation class="equation" label="eq:gumbel_pdf" align="center" raw="f(x;\mu,\beta) = \frac{1}{\beta}e^{-\left( \frac{x-\mu}{\beta}+e^{- \frac{x-\mu}{\beta}}\right)}" alt="Probability density function (PDF) for a Gumbel distribution."> -->
     30 
     31 <div class="equation" align="center" data-raw-text="f(x;\mu,\beta) = \frac{1}{\beta}e^{-\left( \frac{x-\mu}{\beta}+e^{- \frac{x-\mu}{\beta}}\right)}" data-equation="eq:gumbel_pdf">
     32     <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@591cf9d5c3a0cd3c1ceec961e5c49d73a68374cb/lib/node_modules/@stdlib/stats/base/dists/gumbel/pdf/docs/img/equation_gumbel_pdf.svg" alt="Probability density function (PDF) for a Gumbel distribution.">
     33     <br>
     34 </div>
     35 
     36 <!-- </equation> -->
     37 
     38 where `mu` is the location parameter and `beta > 0` is the scale parameter.
     39 
     40 </section>
     41 
     42 <!-- /.intro -->
     43 
     44 <section class="usage">
     45 
     46 ## Usage
     47 
     48 ```javascript
     49 var pdf = require( '@stdlib/stats/base/dists/gumbel/pdf' );
     50 ```
     51 
     52 #### pdf( x, mu, beta )
     53 
     54 Evaluates the [probability density function][pdf] (PDF) for a [Gumbel][gumbel-distribution] distribution with parameters `mu` (location parameter) and `beta` (scale parameter).
     55 
     56 ```javascript
     57 var y = pdf( 0.0, 0.0, 2.0 );
     58 // returns ~0.184
     59 
     60 y = pdf( 0.0, 0.0, 1.0 );
     61 // returns ~0.368
     62 
     63 y = pdf( 1.0, 3.0, 2.0 );
     64 // returns ~0.09
     65 ```
     66 
     67 If provided `NaN` as any argument, the function returns `NaN`.
     68 
     69 ```javascript
     70 var y = pdf( NaN, 0.0, 1.0 );
     71 // returns NaN
     72 
     73 y = pdf( 0.0, NaN, 1.0 );
     74 // returns NaN
     75 
     76 y = pdf( 0.0, 0.0, NaN );
     77 // returns NaN
     78 ```
     79 
     80 If provided `beta <= 0`, the function returns `NaN`.
     81 
     82 ```javascript
     83 var y = pdf( 2.0, 0.0, -1.0 );
     84 // returns NaN
     85 
     86 y = pdf( 2.0, 8.0, 0.0 );
     87 // returns NaN
     88 ```
     89 
     90 #### pdf.factory( mu, beta )
     91 
     92 Partially apply `mu` and `beta` to create a reusable `function` for evaluating the PDF.
     93 
     94 ```javascript
     95 var mypdf = pdf.factory( 10.0, 2.0 );
     96 
     97 y = mypdf( 10.0 );
     98 // returns ~0.184
     99 
    100 y = mypdf( 12.0 );
    101 // returns ~0.127
    102 ```
    103 
    104 </section>
    105 
    106 <!-- /.usage -->
    107 
    108 <section class="examples">
    109 
    110 ## Examples
    111 
    112 <!-- eslint no-undef: "error" -->
    113 
    114 ```javascript
    115 var randu = require( '@stdlib/random/base/randu' );
    116 var pdf = require( '@stdlib/stats/base/dists/gumbel/pdf' );
    117 
    118 var beta;
    119 var mu;
    120 var x;
    121 var y;
    122 var i;
    123 
    124 for ( i = 0; i < 10; i++ ) {
    125     x = randu() * 10.0;
    126     mu = randu() * 10.0;
    127     beta = randu() * 10.0;
    128     y = pdf( x, mu, beta );
    129     console.log( 'x: %d, µ: %d, β: %d, f(x;µ,β): %d', x, mu, beta, y );
    130 }
    131 ```
    132 
    133 </section>
    134 
    135 <!-- /.examples -->
    136 
    137 <section class="links">
    138 
    139 [gumbel-distribution]: https://en.wikipedia.org/wiki/Gumbel_distribution
    140 
    141 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function
    142 
    143 </section>
    144 
    145 <!-- /.links -->