time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1847B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
     24 var constantFunction = require( '@stdlib/utils/constant-function' );
     25 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     26 var pow = require( '@stdlib/math/base/special/pow' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the probability mass function (PMF) for a geometric distribution with success probability `p`.
     33 *
     34 * @param {Probability} p - success probability
     35 * @returns {Function} PMF
     36 *
     37 * @example
     38 * var pmf = factory( 0.5 );
     39 * var y = pmf( 3.0 );
     40 * // returns 0.0625
     41 *
     42 * y = pmf( 1.0 );
     43 * // returns 0.25
     44 */
     45 function factory( p ) {
     46 	if (
     47 		isnan( p ) ||
     48 		p < 0.0 ||
     49 		p > 1.0
     50 	) {
     51 		return constantFunction( NaN );
     52 	}
     53 	return pmf;
     54 
     55 	/**
     56 	* Evaluates the probability mass function (PMF) for a geometric distribution.
     57 	*
     58 	* @private
     59 	* @param {number} x - input value
     60 	* @returns {Probability} evaluated PMF
     61 	*
     62 	* @example
     63 	* var y = pmf( 2.0 );
     64 	* // returns <number>
     65 	*/
     66 	function pmf( x ) {
     67 		var q;
     68 		if ( isnan( x ) ) {
     69 			return NaN;
     70 		}
     71 		if ( isNonNegativeInteger( x ) ) {
     72 			q = 1.0 - p;
     73 			return p * pow( q, x );
     74 		}
     75 		return 0.0;
     76 	}
     77 }
     78 
     79 
     80 // EXPORTS //
     81 
     82 module.exports = factory;