time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1853B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var isProbability = require( '@stdlib/math/base/assert/is-probability' );
     25 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     26 var exp = require( '@stdlib/math/base/special/exp' );
     27 var ln = require( '@stdlib/math/base/special/ln' );
     28 
     29 
     30 // MAIN //
     31 
     32 /**
     33 * Returns a function for evaluating the moment-generating function (MGF) of a geometric distribution with success probability `p`.
     34 *
     35 * @param {Probability} p - success probability
     36 * @returns {Function} MGF
     37 *
     38 * @example
     39 * var mgf = factory( 0.8 );
     40 * var y = mgf( -0.2 );
     41 * // returns ~0.783
     42 */
     43 function factory( p ) {
     44 	if ( !isProbability( p ) ) {
     45 		return constantFunction( NaN );
     46 	}
     47 	return mgf;
     48 
     49 	/**
     50 	* Evaluates the moment-generating function (MGF) for a geometric distribution.
     51 	*
     52 	* @private
     53 	* @param {number} t - input value
     54 	* @returns {number} evaluated MGF
     55 	*
     56 	* @example
     57 	* var y = mgf( 0.5 );
     58 	* // returns <number>
     59 	*/
     60 	function mgf( t ) {
     61 		var et;
     62 		var q;
     63 		if ( isnan( t ) ) {
     64 			return NaN;
     65 		}
     66 		q = 1.0 - p;
     67 		if ( t >= -ln( q ) ) {
     68 			return NaN;
     69 		}
     70 		et = exp( t );
     71 		return ( p * et ) / ( 1.0 - (q * et ));
     72 	}
     73 }
     74 
     75 
     76 // EXPORTS //
     77 
     78 module.exports = factory;