repl.txt (1304B)
1 2 {{alias}}( t, p ) 3 Evaluates the moment-generating function (MGF) for a geometric 4 distribution with success probability `p` at a value `t`. 5 6 If provided `NaN` as any argument, the function returns `NaN`. 7 8 If `p < 0` or `p > 1`, the function returns `NaN`. 9 10 If `t >= -ln(1-p)`, the function returns `NaN`. 11 12 Parameters 13 ---------- 14 t: number 15 Input value. 16 17 p: number 18 Success probability. 19 20 Returns 21 ------- 22 out: number 23 Evaluated MGF. 24 25 Examples 26 -------- 27 > var y = {{alias}}( 0.2, 0.5 ) 28 ~1.569 29 > y = {{alias}}( 0.4, 0.5 ) 30 ~2.936 31 // Case: t >= -ln(1-p) 32 > y = {{alias}}( 0.8, 0.5 ) 33 NaN 34 > y = {{alias}}( NaN, 0.0 ) 35 NaN 36 > y = {{alias}}( 0.0, NaN ) 37 NaN 38 > y = {{alias}}( -2.0, -1.0 ) 39 NaN 40 > y = {{alias}}( 0.2, 2.0 ) 41 NaN 42 43 44 {{alias}}.factory( p ) 45 Returns a function for evaluating the moment-generating function (MGF) of a 46 geometric distribution with success probability `p`. 47 48 Parameters 49 ---------- 50 p: number 51 Success probability. 52 53 Returns 54 ------- 55 mgf: Function 56 Moment-generating function (MGF). 57 58 Examples 59 -------- 60 > var mymgf = {{alias}}.factory( 0.8 ); 61 > var y = mymgf( -0.2 ) 62 ~0.783 63 64 See Also 65 -------- 66