README.md (4085B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Probability Mass Function 22 23 > [Geometric][geometric-distribution] distribution logarithm of [probability mass function][pmf] (PMF). 24 25 <section class="intro"> 26 27 The [probability mass function][pmf] (PMF) for a [geometric][geometric-distribution] random variable is defined as 28 29 <!-- <equation class="equation" label="eq:geometric_pmf" align="center" raw="\Pr(X = x) = \begin{cases}(1-p)^{x}\,p & \text{ for } x=0,1,2,\ldots \\ 0 & \text{ otherwise } \end{cases}" alt="Probability mass function (PMF) for a geometric distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="\Pr(X = x) = \begin{cases}(1-p)^{x}\,p & \text{ for } x=0,1,2,\ldots \\ 0 & \text{ otherwise } \end{cases}" data-equation="eq:geometric_pmf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/geometric/logpmf/docs/img/equation_geometric_pmf.svg" alt="Probability mass function (PMF) for a geometric distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `0 <= p <= 1` is the success probability. The random variable `X` denotes the number of failures until the first success in a sequence of independent Bernoulli trials. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' ); 50 ``` 51 52 #### logpmf( x, p ) 53 54 Evaluates the logarithm of the [probability mass function][pmf] (PMF) of a [geometric][geometric-distribution] distribution with success probability `0 <= p <= 1`. 55 56 ```javascript 57 var y = logpmf( 4.0, 0.3 ); 58 // returns ~-2.631 59 60 y = logpmf( 2.0, 0.7 ); 61 // returns ~-2.765 62 63 y = logpmf( -1.0, 0.5 ); 64 // returns -Infinity 65 ``` 66 67 If provided `NaN` as any argument, the function returns `NaN`. 68 69 ```javascript 70 var y = logpmf( NaN, 0.0 ); 71 // returns NaN 72 73 y = logpmf( 0.0, NaN ); 74 // returns NaN 75 ``` 76 77 If provided a success probability `p` outside of the interval `[0,1]`, the function returns `NaN`. 78 79 ```javascript 80 var y = logpmf( 2.0, -1.0 ); 81 // returns NaN 82 83 y = logpmf( 2.0, 1.5 ); 84 // returns NaN 85 ``` 86 87 #### logpmf.factory( p ) 88 89 Returns a function for evaluating the logarithm of the [probability mass function][pmf] (PMF) of a [geometric][geometric-distribution] distribution with success probability `0 <= p <= 1`. 90 91 ```javascript 92 var mylogpmf = logpmf.factory( 0.5 ); 93 var y = mylogpmf( 3.0 ); 94 // returns ~-2.773 95 96 y = mylogpmf( 1.0 ); 97 // returns ~-1.386 98 ``` 99 100 </section> 101 102 <!-- /.usage --> 103 104 <section class="notes"> 105 106 ## Notes 107 108 - In virtually all cases, using the `logpmf` or `logcdf` functions is preferable to manually computing the logarithm of the `pmf` or `cdf`, respectively, since the latter is prone to overflow and underflow. 109 110 </section> 111 112 <!-- /.notes --> 113 114 <section class="examples"> 115 116 ## Examples 117 118 <!-- eslint no-undef: "error" --> 119 120 ```javascript 121 var randu = require( '@stdlib/random/base/randu' ); 122 var round = require( '@stdlib/math/base/special/round' ); 123 var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' ); 124 125 var p; 126 var x; 127 var y; 128 var i; 129 130 for ( i = 0; i < 10; i++ ) { 131 x = round( randu() * 5.0 ); 132 p = randu(); 133 y = logpmf( x, p ); 134 console.log( 'x: %d, p: %d, ln( P( X = x; p ) ): %d', x, p.toFixed( 4 ), y.toFixed( 4 ) ); 135 } 136 ``` 137 138 </section> 139 140 <!-- /.examples --> 141 142 <section class="links"> 143 144 [geometric-distribution]: https://en.wikipedia.org/wiki/Geometric_distribution 145 146 [pmf]: https://en.wikipedia.org/wiki/Probability_mass_function 147 148 </section> 149 150 <!-- /.links -->