pdf.js (2093B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var PINF = require( '@stdlib/constants/float64/pinf' ); 25 var gammaDeriv = require( './gamma_p_derivative.js' ); 26 27 28 // MAIN // 29 30 /** 31 * Evaluates the probability density function (PDF) for a gamma distribution with shape parameter `alpha` and rate parameter `beta` at a value `x`. 32 * 33 * @param {number} x - input value 34 * @param {NonNegativeNumber} alpha - shape parameter 35 * @param {PositiveNumber} beta - rate parameter 36 * @returns {number} evaluated PDF 37 * 38 * @example 39 * var y = pdf( 2.0, 0.5, 1.0 ); 40 * // returns ~0.054 41 * 42 * @example 43 * var y = pdf( 0.1, 1.0, 1.0 ); 44 * // returns ~0.905 45 * 46 * @example 47 * var y = pdf( -1.0, 4.0, 2.0 ); 48 * // returns 0.0 49 * 50 * @example 51 * var y = pdf( NaN, 0.6, 1.0 ); 52 * // returns NaN 53 * 54 * @example 55 * var y = pdf( 0.0, NaN, 1.0 ); 56 * // returns NaN 57 * 58 * @example 59 * var y = pdf( 0.0, 1.0, NaN ); 60 * // returns NaN 61 * 62 * @example 63 * // Negative shape parameter: 64 * var y = pdf( 2.0, -1.0, 1.0 ); 65 * // returns NaN 66 * 67 * @example 68 * // Negative rate parameter: 69 * var y = pdf( 2.0, 1.0, -1.0 ); 70 * // returns NaN 71 */ 72 function pdf( x, alpha, beta ) { 73 if ( 74 isnan( x ) || 75 isnan( alpha ) || 76 isnan( beta ) || 77 alpha < 0.0 || 78 beta <= 0.0 79 ) { 80 return NaN; 81 } 82 if ( x < 0.0 || x === PINF ) { 83 return 0.0; 84 } 85 if ( alpha === 0.0 ) { 86 // Point mass at 0... 87 return ( x === 0.0 ) ? PINF : 0.0; 88 } 89 return gammaDeriv( alpha, x * beta ) * beta; 90 } 91 92 93 // EXPORTS // 94 95 module.exports = pdf;