time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

entropy.js (1722B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var digamma = require( '@stdlib/math/base/special/digamma' );
     24 var gammaln = require( '@stdlib/math/base/special/gammaln' );
     25 var ln = require( '@stdlib/math/base/special/ln' );
     26 
     27 
     28 // MAIN //
     29 
     30 /**
     31 * Returns the differential entropy of a gamma distribution.
     32 *
     33 * @param {PositiveNumber} alpha - shape parameter
     34 * @param {PositiveNumber} beta - rate parameter
     35 * @returns {number} entropy
     36 *
     37 * @example
     38 * var v = entropy( 1.0, 1.0 );
     39 * // returns 1.0
     40 *
     41 * @example
     42 * var v = entropy( 4.0, 12.0 );
     43 * // returns ~-0.462
     44 *
     45 * @example
     46 * var v = entropy( 8.0, 2.0 );
     47 * // returns ~1.723
     48 *
     49 * @example
     50 * var v = entropy( 1.0, -0.1 );
     51 * // returns NaN
     52 *
     53 * @example
     54 * var v = entropy( -0.1, 1.0 );
     55 * // returns NaN
     56 *
     57 * @example
     58 * var v = entropy( 2.0, NaN );
     59 * // returns NaN
     60 *
     61 * @example
     62 * var v = entropy( NaN, 2.0 );
     63 * // returns NaN
     64 */
     65 function entropy( alpha, beta ) {
     66 	var out;
     67 	if ( alpha <= 0.0 || beta <= 0.0 ) {
     68 		return NaN;
     69 	}
     70 	out = alpha - ln( beta );
     71 	out += gammaln( alpha );
     72 	out += ( 1.0-alpha ) * digamma( alpha );
     73 	return out;
     74 }
     75 
     76 
     77 // EXPORTS //
     78 
     79 module.exports = entropy;