pdf.js (2353B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var PINF = require( '@stdlib/constants/float64/pinf' ); 25 var ibetaDerivative = require( './ibeta_derivative.js' ); 26 27 28 // MAIN // 29 30 /** 31 * Evaluates the probability density function (PDF) for an F distribution with numerator degrees of freedom `d1` and denominator degrees of freedom `d2` at a value `x`. 32 * 33 * @param {number} x - input value 34 * @param {PositiveNumber} d1 - numerator degrees of freedom 35 * @param {PositiveNumber} d2 - denominator degrees of freedom 36 * @returns {number} evaluated PDF 37 * 38 * @example 39 * var y = pdf( 2.0, 0.5, 1.0 ); 40 * // returns ~0.057 41 * 42 * @example 43 * var y = pdf( 0.1, 1.0, 1.0 ); 44 * // returns ~0.915 45 * 46 * @example 47 * var y = pdf( -1.0, 4.0, 2.0 ); 48 * // returns 0.0 49 * 50 * @example 51 * var y = pdf( NaN, 1.0, 1.0 ); 52 * // returns NaN 53 * 54 * @example 55 * var y = pdf( 0.0, NaN, 1.0 ); 56 * // returns NaN 57 * 58 * @example 59 * var y = pdf( 0.0, 1.0, NaN ); 60 * // returns NaN 61 * 62 * @example 63 * var y = pdf( 2.0, 1.0, -1.0 ); 64 * // returns NaN 65 * 66 * @example 67 * var y = pdf( 2.0, -1.0, 1.0 ); 68 * // returns NaN 69 */ 70 function pdf( x, d1, d2 ) { 71 var v1x; 72 var y; 73 var z; 74 if ( 75 isnan( x ) || 76 isnan( d1 ) || 77 isnan( d2 ) || 78 d1 <= 0.0 || 79 d2 <= 0.0 80 ) { 81 return NaN; 82 } 83 if ( x < 0.0 || x === PINF ) { 84 return 0.0; 85 } 86 if ( x === 0.0 ) { 87 if ( d1 < 2.0 ) { 88 return PINF; 89 } 90 if ( d1 === 2.0 ) { 91 return 1.0; 92 } 93 return 0.0; 94 } 95 v1x = d1 * x; 96 if ( v1x > d2 ) { 97 y = ( d2 * d1 ) / ( ( d2 + v1x ) * ( d2 + v1x ) ); 98 return y * ibetaDerivative( d2 / ( d2+v1x ), d2/2.0, d1/2.0 ); 99 } 100 z = d2 + v1x; 101 y = ((z * d1) - (x * d1 * d1)) / ( z * z ); 102 return y * ibetaDerivative( v1x / ( d2+v1x ), d1/2.0, d2/2.0 ); 103 } 104 105 106 // EXPORTS // 107 108 module.exports = pdf;