time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1870B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     25 var exp = require( '@stdlib/math/base/special/exp' );
     26 var PINF = require( '@stdlib/constants/float64/pinf' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the probability density function (PDF) for an exponential distribution with parameter `lambda`.
     33 *
     34 * @param {PositiveNumber} lambda - rate parameter
     35 * @returns {Function} probability density function (PDF)
     36 *
     37 * @example
     38 * var pdf = factory( 0.5 );
     39 * var y = pdf( 3.0 );
     40 * // returns ~0.112
     41 *
     42 * y = pdf( 1.0 );
     43 * // returns ~0.303
     44 */
     45 function factory( lambda ) {
     46 	var scale;
     47 	if ( isnan( lambda ) || lambda < 0.0 || lambda === PINF ) {
     48 		return constantFunction( NaN );
     49 	}
     50 	scale = 1.0 / lambda;
     51 	return pdf;
     52 
     53 	/**
     54 	* Evaluates the probability density function (PDF) for an exponential distribution.
     55 	*
     56 	* @private
     57 	* @param {number} x - input value
     58 	* @returns {number} evaluated PDF
     59 	*
     60 	* @example
     61 	* var y = pdf( 2.3 );
     62 	* // returns <number>
     63 	*/
     64 	function pdf( x ) {
     65 		if ( isnan( x ) ) {
     66 			return NaN;
     67 		}
     68 		if ( x < 0.0 ) {
     69 			return 0.0;
     70 		}
     71 		return exp( -x / scale ) / scale;
     72 	}
     73 }
     74 
     75 
     76 // EXPORTS //
     77 
     78 module.exports = factory;