README.md (3760B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Probability Density Function 22 23 > Evaluate the natural logarithm of the probability density function (PDF) for an [exponential][exponential-distribution] distribution. 24 25 <section class="intro"> 26 27 The [probability density function][pdf] (PDF) for an [exponential][exponential-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:exponential_pdf" align="center" raw="f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}" alt="Probability density function (PDF) for a Exponential distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}" data-equation="eq:exponential_pdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/exponential/logpdf/docs/img/equation_exponential_pdf.svg" alt="Probability density function (PDF) for a Exponential distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `λ` is the rate parameter. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logpdf = require( '@stdlib/stats/base/dists/exponential/logpdf' ); 50 ``` 51 52 #### logpdf( x, lambda ) 53 54 Evaluates the natural logarithm of the [probability density function][pdf] (PDF) for an [exponential][exponential-distribution] distribution with rate parameter `lambda`. 55 56 ```javascript 57 var y = logpdf( 2.0, 0.3 ); 58 // returns ~-1.804 59 60 y = logpdf( 2.0, 1.0 ); 61 // returns ~-2.0 62 ``` 63 64 If provided `NaN` as any argument, the function returns `NaN`. 65 66 ```javascript 67 var y = logpdf( NaN, 0.0 ); 68 // returns NaN 69 70 y = logpdf( 0.0, NaN ); 71 // returns NaN 72 ``` 73 74 If provided `lambda < 0`, the function returns `NaN`. 75 76 ```javascript 77 var y = logpdf( 2.0, -1.0 ); 78 // returns NaN 79 ``` 80 81 #### logpdf.factory( lambda ) 82 83 Returns a function for evaluating the natural logarithm of the probability density function ([PDF][pdf]) for an exponential distribution with rate parameter `lambda`. 84 85 ```javascript 86 var mylogpdf = logpdf.factory( 0.1 ); 87 88 var y = mylogpdf( 8.0 ); 89 // returns ~-3.103 90 91 y = mylogpdf( 5.0 ); 92 // returns ~-2.803 93 ``` 94 95 </section> 96 97 <!-- /.usage --> 98 99 <section class="notes"> 100 101 ## Notes 102 103 - In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow. 104 105 </section> 106 107 <!-- /.notes --> 108 109 <section class="examples"> 110 111 ## Examples 112 113 <!-- eslint no-undef: "error" --> 114 115 ```javascript 116 var randu = require( '@stdlib/random/base/randu' ); 117 var logpdf = require( '@stdlib/stats/base/dists/exponential/logpdf' ); 118 119 var lambda; 120 var x; 121 var y; 122 var i; 123 124 for ( i = 0; i < 10; i++ ) { 125 x = randu() * 10.0; 126 lambda = randu() * 10.0; 127 y = logpdf( x, lambda ); 128 console.log( 'x: %d, λ: %d, ln(f(x;λ)): %d', x, lambda, y ); 129 } 130 ``` 131 132 </section> 133 134 <!-- /.examples --> 135 136 <section class="links"> 137 138 [pdf]: https://en.wikipedia.org/wiki/Probability_density_function 139 140 [exponential-distribution]: https://en.wikipedia.org/wiki/Exponential_distribution 141 142 </section> 143 144 <!-- /.links -->