README.md (3805B)
1 <!-- 2 3 @license Apache-2.0 4 5 Copyright (c) 2018 The Stdlib Authors. 6 7 Licensed under the Apache License, Version 2.0 (the "License"); 8 you may not use this file except in compliance with the License. 9 You may obtain a copy of the License at 10 11 http://www.apache.org/licenses/LICENSE-2.0 12 13 Unless required by applicable law or agreed to in writing, software 14 distributed under the License is distributed on an "AS IS" BASIS, 15 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 See the License for the specific language governing permissions and 17 limitations under the License. 18 19 --> 20 21 # Logarithm of Cumulative Distribution Function 22 23 > Evaluate the natural logarithm of the [cumulative distribution function][cdf] for an [exponential][exponential-distribution] distribution. 24 25 <section class="intro"> 26 27 The [cumulative distribution function][cdf] for an [exponential][exponential-distribution] random variable is 28 29 <!-- <equation class="equation" label="eq:exponential_cdf" align="center" raw="F(x;\lambda) = \begin{cases} 1-e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}" alt="Cumulative distribution function for an exponential distribution."> --> 30 31 <div class="equation" align="center" data-raw-text="F(x;\lambda) = \begin{cases} 1-e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}" data-equation="eq:exponential_cdf"> 32 <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/exponential/logcdf/docs/img/equation_exponential_cdf.svg" alt="Cumulative distribution function for an exponential distribution."> 33 <br> 34 </div> 35 36 <!-- </equation> --> 37 38 where `λ` is the rate parameter. 39 40 </section> 41 42 <!-- /.intro --> 43 44 <section class="usage"> 45 46 ## Usage 47 48 ```javascript 49 var logcdf = require( '@stdlib/stats/base/dists/exponential/logcdf' ); 50 ``` 51 52 #### logcdf( x, lambda ) 53 54 Evaluates the natural logarithm of the [cumulative distribution function][cdf] for an [exponential][exponential-distribution] distribution with rate parameter `lambda`. 55 56 ```javascript 57 var y = logcdf( 2.0, 0.3 ); 58 // returns ~-0.796 59 60 y = logcdf( 10.0, 0.3 ); 61 // returns ~-0.051 62 ``` 63 64 If provided `NaN` as any argument, the function returns `NaN`. 65 66 ```javascript 67 var y = logcdf( NaN, 0.0 ); 68 // returns NaN 69 70 y = logcdf( 0.0, NaN ); 71 // returns NaN 72 ``` 73 74 If provided `lambda < 0`, the function returns `NaN`. 75 76 ```javascript 77 var y = logcdf( 2.0, -1.0 ); 78 // returns NaN 79 ``` 80 81 #### logcdf.factory( lambda ) 82 83 Returns a function for evaluating the natural logarithm of the [cumulative distribution function (CDF)][cdf] for an exponential distribution with rate parameter `lambda`. 84 85 ```javascript 86 var mylogcdf = logcdf.factory( 0.1 ); 87 88 var y = mylogcdf( 8.0 ); 89 // returns ~-0.597 90 91 y = mylogcdf( 2.0 ); 92 // returns ~-1.708 93 94 y = mylogcdf( 0.0 ); 95 // returns -Infinity 96 ``` 97 98 </section> 99 100 <!-- /.usage --> 101 102 <section class="notes"> 103 104 ## Notes 105 106 - In virtually all cases, using the `logpdf` or `logcdf` functions is preferable to manually computing the logarithm of the `pdf` or `cdf`, respectively, since the latter is prone to overflow and underflow. 107 108 </section> 109 110 <!-- /.notes --> 111 112 <section class="examples"> 113 114 ## Examples 115 116 <!-- eslint no-undef: "error" --> 117 118 ```javascript 119 var randu = require( '@stdlib/random/base/randu' ); 120 var logcdf = require( '@stdlib/stats/base/dists/exponential/logcdf' ); 121 122 var lambda; 123 var x; 124 var y; 125 var i; 126 127 for ( i = 0; i < 10; i++ ) { 128 x = randu() * 10.0; 129 lambda = randu() * 10.0; 130 y = logcdf( x, lambda ); 131 console.log( 'x: %d, λ: %d, ln(F(x;λ)): %d', x, lambda, y ); 132 } 133 ``` 134 135 </section> 136 137 <!-- /.examples --> 138 139 <section class="links"> 140 141 [cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function 142 143 [exponential-distribution]: https://en.wikipedia.org/wiki/Exponential_distribution 144 145 </section> 146 147 <!-- /.links -->