time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1437B)


      1 
      2 {{alias}}( x, a, b )
      3     Evaluates the probability mass function (PMF) for a discrete uniform
      4     distribution with minimum support `a` and maximum support `b` at a value
      5     `x`.
      6 
      7     If `a > b`, the function returns `NaN`.
      8 
      9     If `a` or `b` is not an integer value, the function returns `NaN`.
     10 
     11     Parameters
     12     ----------
     13     x: number
     14         Input value.
     15 
     16     a: integer
     17         Minimum support.
     18 
     19     b: integer
     20         Maximum support.
     21 
     22     Returns
     23     -------
     24     out: number
     25         Evaluated PMF.
     26 
     27     Examples
     28     --------
     29     > var y = {{alias}}( 2.0, 0, 4 )
     30     ~0.2
     31     > y = {{alias}}( 5.0, 0, 4 )
     32     0.0
     33     > y = {{alias}}( 3.0, -4, 4 )
     34     ~0.111
     35     > y = {{alias}}( NaN, 0, 1 )
     36     NaN
     37     > y = {{alias}}( 0.0, NaN, 1 )
     38     NaN
     39     > y = {{alias}}( 0.0, 0, NaN )
     40     NaN
     41     > y = {{alias}}( 2.0, 3, 1 )
     42     NaN
     43     > y = {{alias}}( 2.0, 1, 2.4 )
     44     NaN
     45 
     46 
     47 {{alias}}.factory( a, b )
     48     Returns a function for evaluating the probability mass function (PMF) of
     49     a discrete uniform distribution with minimum support `a` and maximum support
     50     `b`.
     51 
     52     Parameters
     53     ----------
     54     a: integer
     55         Minimum support.
     56 
     57     b: integer
     58         Maximum support.
     59 
     60     Returns
     61     -------
     62     pmf: Function
     63         Probability mass function (PMF).
     64 
     65     Examples
     66     --------
     67     > var myPMF = {{alias}}.factory( 6, 7 );
     68     > var y = myPMF( 7.0 )
     69     0.5
     70     > y = myPMF( 5.0 )
     71     0.0
     72 
     73     See Also
     74     --------
     75