time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1942B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var PINF = require( '@stdlib/constants/float64/pinf' );
     25 var NINF = require( '@stdlib/constants/float64/ninf' );
     26 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the natural logarithm of the probability density function (logPDF) of a degenerate distribution centered at a provided mean value.
     33 *
     34 * @param {number} mu - value at which to center the distribution
     35 * @returns {Function} function to evaluate the natural logarithm of the probability density function
     36 *
     37 * @example
     38 * var logpdf = factory( 5.0 );
     39 *
     40 * var y = logpdf( 0.0 );
     41 * // returns -Infinity
     42 *
     43 * y = logpdf( 5.0 );
     44 * // returns Infinity
     45 */
     46 function factory( mu ) {
     47 	if ( isnan( mu ) ) {
     48 		return constantFunction( NaN );
     49 	}
     50 	return logpdf;
     51 
     52 	/**
     53 	* Evaluates the natural logarithm of the probability density function (logPDF) of a degenerate distribution.
     54 	*
     55 	* @private
     56 	* @param {number} x - input value
     57 	* @returns {number} natural logarithm of the probability density function
     58 	*
     59 	* @example
     60 	* var y = logpdf( 10.0 );
     61 	* // returns <number>
     62 	*/
     63 	function logpdf( x ) {
     64 		if ( isnan( x ) ) {
     65 			return NaN;
     66 		}
     67 		return ( x === mu ) ? PINF : NINF;
     68 	}
     69 }
     70 
     71 
     72 // EXPORTS //
     73 
     74 module.exports = factory;