time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

factory.js (1956B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var constantFunction = require( '@stdlib/utils/constant-function' );
     24 var degenerate = require( './../../../../../base/dists/degenerate/pdf' ).factory;
     25 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     26 var cospi = require( '@stdlib/math/base/special/cospi' );
     27 
     28 
     29 // MAIN //
     30 
     31 /**
     32 * Returns a function for evaluating the probability density function (PDF) for a raised cosine distribution.
     33 *
     34 * @param {number} mu - location parameter
     35 * @param {NonNegativeNumber} s - scale parameter
     36 * @returns {Function} PDF
     37 *
     38 * @example
     39 * var pdf = factory( 0.0, 3.0 );
     40 * var y = pdf( 2.0 );
     41 * // returns ~0.083
     42 *
     43 * y = pdf( 5.0 );
     44 * // returns 0.0
     45 */
     46 function factory( mu, s ) {
     47 	if ( isnan( mu ) || isnan( s ) || s < 0.0 ) {
     48 		return constantFunction( NaN );
     49 	}
     50 	if ( s === 0.0 ) {
     51 		return degenerate( mu );
     52 	}
     53 	return pdf;
     54 
     55 	/**
     56 	* Evaluates the probability density function (PDF) for a raised cosine distribution.
     57 	*
     58 	* @private
     59 	* @param {number} x - input value
     60 	* @returns {number} evaluated PDF
     61 	*
     62 	* @example
     63 	* var y = pdf( -1.2 );
     64 	* // returns <number>
     65 	*/
     66 	function pdf( x ) {
     67 		var z;
     68 		if ( isnan( x ) ) {
     69 			return NaN;
     70 		}
     71 		if (
     72 			x < mu - s ||
     73 			x > mu + s
     74 		) {
     75 			return 0.0;
     76 		}
     77 		z = ( x - mu ) / s;
     78 		return ( 1.0 + cospi( z ) ) / ( 2.0 * s );
     79 	}
     80 }
     81 
     82 
     83 // EXPORTS //
     84 
     85 module.exports = factory;