logpdf.js (2210B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var cospi = require( '@stdlib/math/base/special/cospi' ); 25 var ln = require( '@stdlib/math/base/special/ln' ); 26 var NINF = require( '@stdlib/constants/float64/ninf' ); 27 var PINF = require( '@stdlib/constants/float64/pinf' ); 28 29 30 // MAIN // 31 32 /** 33 * Evaluates the logarithm of the probability density function (PDF) for a raised cosine distribution with location parameter `mu` and scale parameter `s` at a value `x`. 34 * 35 * @param {number} x - input value 36 * @param {number} mu - location parameter 37 * @param {NonNegativeNumber} s - scale parameter 38 * @returns {number} evaluated logPDF 39 * 40 * @example 41 * var y = logpdf( 2.0, 0.0, 3.0 ); 42 * // returns ~-2.485 43 * 44 * @example 45 * var y = logpdf( 1.5, 4.0, 4.0 ); 46 * // returns ~-2.562 47 * 48 * @example 49 * var y = logpdf( NaN, 0.0, 1.0 ); 50 * // returns NaN 51 * 52 * @example 53 * var y = logpdf( 0.0, NaN, 1.0 ); 54 * // returns NaN 55 * 56 * @example 57 * var y = logpdf( 0.0, 0.0, NaN ); 58 * // returns NaN 59 * 60 * @example 61 * // Negative scale parameter: 62 * var y = logpdf( 2.0, 0.0, -1.0 ); 63 * // returns NaN 64 * 65 * @example 66 * var y = logpdf( 2.0, 8.0, 0.0 ); 67 * // returns -Infinity 68 * 69 * @example 70 * var y = logpdf( 8.0, 8.0, 0.0 ); 71 * // returns Infinity 72 */ 73 function logpdf( x, mu, s ) { 74 var z; 75 if ( 76 isnan( x ) || 77 isnan( mu ) || 78 isnan( s ) || 79 s < 0.0 80 ) { 81 return NaN; 82 } 83 if ( s === 0.0 ) { 84 return ( x === mu ) ? PINF : NINF; 85 } 86 if ( 87 x < mu - s || 88 x > mu + s 89 ) { 90 return NINF; 91 } 92 z = ( x - mu ) / s; 93 return ln( 1.0 + cospi( z ) ) - ln( 2.0 * s ); 94 } 95 96 97 // EXPORTS // 98 99 module.exports = logpdf;