pdf.js (1959B)
1 /** 2 * @license Apache-2.0 3 * 4 * Copyright (c) 2018 The Stdlib Authors. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 */ 18 19 'use strict'; 20 21 // MODULES // 22 23 var isnan = require( '@stdlib/math/base/assert/is-nan' ); 24 var gamma = require( '@stdlib/math/base/special/gamma' ); 25 var exp = require( '@stdlib/math/base/special/exp' ); 26 var pow = require( '@stdlib/math/base/special/pow' ); 27 var PINF = require( '@stdlib/constants/float64/pinf' ); 28 29 30 // MAIN // 31 32 /** 33 * Evaluates the probability density function (PDF) for a chi distribution with degrees of freedom `k` at a value `x`. 34 * 35 * @param {number} x - input value 36 * @param {NonNegativeNumber} k - degrees of freedom 37 * @returns {number} evaluated PDF 38 * 39 * @example 40 * var y = pdf( 0.3, 4.0 ); 41 * // returns ~0.013 42 * 43 * @example 44 * var y = pdf( 0.7, 0.7 ); 45 * // returns ~0.537 46 * 47 * @example 48 * var y = pdf( -1.0, 0.5 ); 49 * // returns 0.0 50 * 51 * @example 52 * var y = pdf( 0.0, NaN ); 53 * // returns NaN 54 * 55 * @example 56 * var y = pdf( NaN, 2.0 ); 57 * // returns NaN 58 * 59 * @example 60 * // Negative degrees of freedom: 61 * var y = pdf( 2.0, -1.0 ); 62 * // returns NaN 63 */ 64 function pdf( x, k ) { 65 var out; 66 var kh; 67 if ( 68 isnan( x ) || 69 isnan( k ) || 70 k < 0.0 71 ) { 72 return NaN; 73 } 74 if ( k === 0.0 ) { 75 // Point mass at 0... 76 return ( x === 0.0 ) ? PINF : 0.0; 77 } 78 if ( x < 0.0 ) { 79 return 0.0; 80 } 81 kh = k / 2.0; 82 out = pow( 2.0, 1.0-kh ) * pow( x, k-1.0 ) * exp( -(x*x)/2.0 ); 83 out /= gamma( kh ); 84 return out; 85 } 86 87 88 // EXPORTS // 89 90 module.exports = pdf;