time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

repl.txt (1349B)


      1 
      2 {{alias}}( x, k )
      3     Evaluates the probability density function (PDF) for a chi distribution with
      4     degrees of freedom `k` at a value `x`.
      5 
      6     If provided `NaN` as any argument, the function returns `NaN`.
      7 
      8     If provided `k < 0`, the function returns `NaN`.
      9 
     10     Parameters
     11     ----------
     12     x: number
     13         Input value.
     14 
     15     k: number
     16         Degrees of freedom.
     17 
     18     Returns
     19     -------
     20     out: number
     21         Evaluated PDF.
     22 
     23     Examples
     24     --------
     25     > var y = {{alias}}( 0.3, 4.0 )
     26     ~0.013
     27     > y = {{alias}}( 0.7, 0.7 )
     28     ~0.537
     29     > y = {{alias}}( -1.0, 0.5 )
     30     0.0
     31     > y = {{alias}}( 0.0, NaN )
     32     NaN
     33     > y = {{alias}}( NaN, 2.0 )
     34     NaN
     35 
     36     // Negative degrees of freedom:
     37     > y = {{alias}}( 2.0, -1.0 )
     38     NaN
     39 
     40     // Degenerate distribution when `k = 0`:
     41     > y = {{alias}}( 2.0, 0.0, 2.0 )
     42     0.0
     43     > y = {{alias}}( 0.0, 0.0, 2.0 )
     44     Infinity
     45 
     46 
     47 {{alias}}.factory( k )
     48     Returns a function for evaluating the probability density function (PDF) of
     49     a chi distribution with degrees of freedom `k`.
     50 
     51     Parameters
     52     ----------
     53     k: number
     54         Degrees of freedom.
     55 
     56     Returns
     57     -------
     58     pdf: Function
     59         Probability density function (PDF).
     60 
     61     Examples
     62     --------
     63     > var myPDF = {{alias}}.factory( 6.0 );
     64     > var y = myPDF( 3.0 )
     65     ~0.337
     66 
     67     See Also
     68     --------
     69