time-to-botec

Benchmark sampling in different programming languages
Log | Files | Refs | README

kurtosis.js (1681B)


      1 /**
      2 * @license Apache-2.0
      3 *
      4 * Copyright (c) 2018 The Stdlib Authors.
      5 *
      6 * Licensed under the Apache License, Version 2.0 (the "License");
      7 * you may not use this file except in compliance with the License.
      8 * You may obtain a copy of the License at
      9 *
     10 *    http://www.apache.org/licenses/LICENSE-2.0
     11 *
     12 * Unless required by applicable law or agreed to in writing, software
     13 * distributed under the License is distributed on an "AS IS" BASIS,
     14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15 * See the License for the specific language governing permissions and
     16 * limitations under the License.
     17 */
     18 
     19 'use strict';
     20 
     21 // MODULES //
     22 
     23 var isnan = require( '@stdlib/math/base/assert/is-nan' );
     24 var skewness = require( './../../../../../base/dists/chi/skewness' );
     25 var variance = require( './../../../../../base/dists/chi/variance' );
     26 var mean = require( './../../../../../base/dists/chi/mean' );
     27 var sqrt = require( '@stdlib/math/base/special/sqrt' );
     28 
     29 
     30 // MAIN //
     31 
     32 /**
     33 * Returns the excess kurtosis of a chi distribution.
     34 *
     35 * @param {PositiveNumber} k - degrees of freedom
     36 * @returns {PositiveNumber} excess kurtosis
     37 *
     38 * @example
     39 * var v = kurtosis( 9.0 );
     40 * // returns ~0.011
     41 *
     42 * @example
     43 * var v = kurtosis( 1.0 );
     44 * // returns ~0.869
     45 *
     46 * @example
     47 * var v = kurtosis( -0.2 );
     48 * // returns NaN
     49 *
     50 * @example
     51 * var v = kurtosis( NaN );
     52 * // returns NaN
     53 */
     54 function kurtosis( k ) {
     55 	var sigma2;
     56 	var sigma;
     57 	var g1;
     58 	var mu;
     59 	if ( isnan( k ) || k <= 0.0 ) {
     60 		return NaN;
     61 	}
     62 	sigma2 = variance( k );
     63 	sigma = sqrt( sigma2 );
     64 	mu = mean( k );
     65 	g1 = skewness( k );
     66 	return ( 2.0/sigma2 ) * ( 1.0 - ( mu*sigma*g1 ) - sigma2 );
     67 }
     68 
     69 
     70 // EXPORTS //
     71 
     72 module.exports = kurtosis;